Supplementary Information

Balancing "on" and "off" response of hydroxy groups to nanozyme catalyzing system to construct ultrasensitive and selective "signal-on" detection platform for dopamine

Hongmei Lan, ^{a‡} Gaoya Li, ^{a‡} Guo Chen, ^{a b} Mengyao Ding, ^a Shuangling Xiao, ^a Jianglin Xiang, ^a Xingwu Duan, ^a Haiyan Cao, ^a Wenbing Shi ^a and Wenfei Dong *^a

^a Key Laboratory of Chongqing Inorganic Special Functional Materials, College of

Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100,

PR China.

^b College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China.

* Corresponding authors:

E-mail: dongwenfei@yznu.edu.cn

[‡] These authors contribute to this work equally.

Table of Contents: Figs. S1-9 Table S1

Fig. S1 The size distribution of MIL-101(Fe) calculated from Fig. 1A.

Fig. S2 (A) UV-Vis spectra of MoS₂-MIL-101(Fe), Ph-(NH₂)₂, and the mixture of MoS₂-MIL-101(Fe) and Ph-(NH₂)₂ after mixing for 0, 1, 2, 3, 4, 5, 6 min; (B) UV-Vis spectra of MoS₂-MIL-101(Fe), Ph-(OH)₂, and the mixture of MoS₂-MIL-101(Fe) and Ph-(OH)₂ after mixing for 0, 1, 2, 3, 4, 5, 6 min; (C) UV-Vis spectra of MoS₂-MIL-101(Fe), Ph-(CHO)₂, and the mixture of MoS₂-MIL-101(Fe) and Ph-(CHO)₂ after mixing for 0, 1, 2, 3, 4, 5, 6 min; (D) UV-Vis spectra of MoS₂-MIL-101(Fe) and Ph-(CHO)₂ after mixing for 0, 1, 2, 3, 4, 5, 6 min; (D) UV-Vis spectra of MoS₂-MIL-101(Fe), Ph-(COOH)₂, and the mixture of MoS₂-MIL-101(Fe) and Ph-(COOH)₂ after mixing for 0, 1, 2, 3, 4, 5, 6 min; (D) UV-Vis spectra of MoS₂-MIL-101(Fe), Ph-(COOH)₂, and the mixture of MoS₂-MIL-101(Fe) and Ph-(COOH)₂ after mixing for 0, 1, 2, 3, 4, 5, 6 min; (D) UV-Vis spectra of MoS₂-MIL-101(Fe), Ph-(COOH)₂, and the mixture of MoS₂-MIL-101(Fe) and Ph-(COOH)₂ after mixing for 0, 1, 2, 3, 4, 5, 6 min. Condition: 50 mg L⁻¹ of MoS₂-MIL-101(Fe), 50 μ M of Ph-(NH₂)₂, Ph-(OH)₂, Ph-(CHO)₂, and Ph-(COOH)₂.

Fig. S3 The response of MoS₂-MIL-101(Fe) catalzyed H_2O_2 -TMB system to Ph-(NH₂)₂ in the concentration of 0, 0.01, 0.05, 0.10 μ M.

Fig. S4 (A) UV-Vis spectra of MoS₂-MIL-101(Fe) catalzyed H₂O₂-TMB system in the presence or absence of DA with 0.5 μ M and 50 μ M. (B) The fluorescence spectra of different systems (a. MoS₂-MIL-101(Fe)+H₂O₂; b. MoS₂-MIL-101(Fe)+H₂O₂+DA (0.5 μ M); c. MoS₂-MIL-101(Fe)+H₂O₂+DA (50 μ M); d. MoS₂-MIL-101(Fe)+H₂O₂+DA (0.5 μ M)+TMB; e. MoS₂-MIL-101(Fe)+H₂O₂+DA (50 μ M)+TMB. Buffer: 0.2 M NaAc-HAc solution (pH 4.0); H₂O₂ concentration: 0.06 mM; TMB concentration: 0.1 mM; MoS₂-MIL-101(Fe) concentration: 5 mg/L; Reaction time: 15 min; Excitation wavelength 475 nm.

Fig. S5 (A) The kinetic curve of MoS₂-MIL-101(Fe)+H₂O₂+TMB system in the presence or absence of 0.5 μ M DA with the change of H₂O₂ concentration and a fixed TMB concentration of 0.10 mM; (B) The kinetic curve of MoS₂-MIL-101(Fe)+H₂O₂+TMB system in the presence or absence of 0.5 μ M DA with the change of TMB concentration and a fixed H₂O₂ concentration of 0.06 mM; (C) The Michaelis constant K_m and (D) the maximum reaction velocity V_{max} obtained from the kinetic curves.

Fig. S6 (A) The molecular formula of dopamine; (B) The effect of Ph-CH₂-CH₂-NH₂ with the concentration range of 0.5 μ M—50 μ M to MoS₂-MIL-101(Fe) catalyzed H₂O₂-TMB system.

Fig. S7 The change of the absorbance of MoS_2 -MIL-101(Fe)-H₂O₂-TMB system in the absence and presence of 0.5 μ M DA with (A) pH change, (B) temperature change, (C) catalyst concentration change and (D) reaction time change.

Fig. S8 The change of the absorbance of MoS_2 -MIL-101(Fe)-H₂O₂-TMB system in the absence and presence of 50 μ M DA with (A) pH change, (B) temperature change, (C) catalyst concentration change and (D) reaction time change.

Fig. S9 (A) The molecular formula of GSH; (B) The absorbance response of the MoS_2 -MIL-101(Fe)-H₂O₂-TMB system to dopamine (DA), glycine (Gly), glutamic acid (Glut), cysteine (Cys) and glutathione (GSH) with the concentration of 50 μ M.

Table S1 Results for the determination of DA in dopamine hydrochloride injection (n=3).

No.	Labeled (M)	Detected (M)	RSD (%)
1	0.210	0.214 ± 0.009	4.3
2	0.053	0.048 ± 0.002	4.6