Supporting information

Fabrication of inverse opal molybdenum sulfide

and its use as catalyst for H₂ evolution

Thai D. Nguyen,^a Huong T. Phung,^{a,b} Duc N.Nguyen,^a Anh D. Nguyen,^{a*} Phong D. Tran^{a*}

^aUniversity of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam. Email: <u>nguyen-duc.anh@usth.edu.vn</u> and <u>phong-</u> <u>dinh.tran@usth.edu.vn</u>

^bGraduated University of Science and Technology, Vietnam Academy of Science and Ttechnology, 18 Hoang Quoc Viet, Hanoi, Vietnam

Figure S1. Size distribution of synthetic spherical polystyrene nanoparticles

No.	Styrene	MeOH/H ₂ O	KPS	SDS	Av. Size	Av. Size	PDI
	(mL)	(mL)	(%w/Sty)	(%w/Sty)	(nm)	(nm)	(DLS)
					(SEM)	(DLS)	
1	1.55	0/70	2.5	6	35	39.4	0.133
2	1.55	0/70	2.5	4.5	50	50.4	0.063
3	1.55	0/70	2.5	3	60	56.0	0.113
4	1.55	0/70	2.5	2	70	75.5	0.077
5	1.55	0/70	2.5	1.2	90	89.2	0.087

Table S1. Polystyrene particles parameters extracted from SEM and DLS analyses

Figure S2. *SEM cross-section image of PS-90nm beads coated FTO electrode*

Figure S3. Surface SEM images of PS-FTO electrodes (using PS particles with different size)

Figure S4. Surface SEM images of 3D-MoS_x films obtained by using 3.53 mC/cm^2 deposition charge and different PS-FTO electrodes (different PS particle size)

Figure S5. Surface and cross-section SEM images collected on 3D-MoS_x-7.07 mC/cm² and 3D-MoS_x-24.71 mC/cm²

Figure S6. EDX analysis of an as-prepared 3D-MoS_xfilm

Figure S7. (a) Stability of 3D-MoS_x and 3D-MoS₂ catalyst electrode assayed by (a) applying a constant catalytic current density of 10 mA/cm² and (b) applying a constant cathodic potential of -0.3 V vs RHE for 6 hours. Electrolyte was a 0.5M H₂SO₄ solution (pH 0.3)

*Figure S8. E-t curve recorded on the 3D-MoS*_x-3.53mC/cm² electrode conditioned at a constant catalytic current density of 10 mA/cm² in a $0.5M H_2SO_4$ (pH 0.3) electrolyte solution

Figure S9. Surface SEM images recorded on a (a) $3D-MoS_2$ and (b) $3D-MoS_x$ film after 6 hours of bulk electrolysis at -0.3V vs. RHE. Electrolyte was a $0.5MH_2SO_4$ solution (pH 0.3)

Figure S10. Water contact angles determined for (a) a bulk MoS_x , (b) a 3D- MoS_x , and a (c) a MoS_2 film

Figure S11. Cyclic voltammograms recorded at different potential scan rates in the capacitive current region on: (a) the bulk-MoS_x-3.53 mC/cm², (b) 3D-MoS_x-3.53 mC/cm², (c) 3D-MoS_x-10.59 mC/cm², (d) 3D-MoS_x-17.75 mC/cm², (e) 3D-MoS_x-24.71 mC/cm². Electrolyte was a 0.5M H₂SO₄ solution (pH 0.3)

Figure S12. (a) Cyclic voltammograms recorded for 1mM ferrocene in DCM (with 0.1M TBATFB electrolyte support) on 3D-MoS_x with different thickness. Potential scan rate was 50 mV/s. (b) Plotting the cathodic current density of the Fc^+/Fc couple in function of the 3D-MoS_x deposition charge density. (c) Plotting the cathodic current density of the Fc^+/Fc couple in function of the 3D-MoS_x films thickness

Figure S13. Plotting capacitive current density obtained at 0.1 V vs. RHE in function of potential scan rate for 3D-MoS₂-3.53 mC/cm² and 3D-MoS_x-3.53 mC/cm² electrodes

Figure S14. Cyclic voltammogram recorded for a solution constituted of $1mM Cu_2SO_4$ and $0.5M H_2SO_4$ employing the 3D-MoS_x-10.59 mC/cm² electrode. Potential scan rate was 50 mV/s toward the anodic direction.

Figure S15. EDS elemental mapping (Mo, S and Cu element) on the cross-section of 3D-MoS_x-10.59 mC/cm² film after being conditioned by cycling potential between -0.7 V to 0.2 V vs. Ag/AgCl with a potential scan rate of 50 mV/s. Electrolyte was constituted of 1mM CuSO₄ and 0.5M H₂SO₄

Calculation of theoretical surface area of 3D-MoS_x

Assume that the polystyrene particles are homogeneous perfect spheres and the arrangement of PS particles on FTO electrodes forms a hexagonal close-packed lattice structure (Figure S12). Each crystal unit cell contains 6 polystyrene particles.

Figure S16. The hexagonal close-packed lattice structural arrangement of PS particles

+ The volume of unit cells is calculated as following: $V_{unit cell} = 24\sqrt{2} \cdot R^3 (nm^3)$

+ Assume that the working electrode was prepared with a working area of 1 cm². The 3D-MoS_x was electrochemically deposited to the d (nm) of thickness.

The volume of 3D-MoS_x films will be calculated as: $V_{(3D-MoSx)} = (1x10^{14})$. d (nm³)

We then calculate the number of polystyrene particles in the deposited volume of $3D-MoS_x$ electrodes:

Number of polystyrene particles:
$$N = 6 \frac{V(3D - MoSx)}{V(unit cell)}$$

+ After removal of PS particles template, we can assume that the surface area of each polystyrene particle is equal to the remain surface area of each MoS_x inverse opal pore. Then the theoretical surface area of $3D-MoS_x$ can be defined:

$$\frac{4}{S_{\text{theo.}} = N x \overline{3} \pi R^3}$$

The theoretical calculated surface values are presented in the table 2.

Table 2. Theoretical calculation of surface area on 3D-MoS_x samples with geometrical area of 1.0 cm²

Run	Sample	Diameter	Volume of	Thickness	Volume	Number of	Surface	Theoretical
		of PS	unit cell	of	of	PS	area of a	surface area
		(cm)	(cm ³⁾	deposited	deposited	particles in	PS particle	(cm ²)
				film (cm)	film (cm ³)	film	(cm ²)	
1	Bulk MoS _x *	0	0	-	-	-	-	1.000
2	3D-MoS _x - 35nm	3.5x10 ⁻⁶	14.553x10 ⁻¹⁵	3.0x10 ⁻⁵	3.0x10 ⁻⁵	12.369x10 ¹⁰	1.539x10 ⁻¹⁰	19.041
3	3D-MoS _x - 50 nm	5.0x10 ⁻⁶	42.427x10 ⁻¹⁵	3.0x10 ⁻⁵	3.0x10 ⁻⁵	4.243x10 ¹⁰	3.142x10 ⁻¹⁰	13.328
4	3D-MoS _x - 60 nm	6.0x10 ⁻⁶	73.314x10 ⁻¹⁵	3.0x10 ⁻⁵	3.0x10 ⁻⁵	2.455x10 ¹⁰	4.524x10 ⁻¹⁰	11.107
5	3D-MoS _x - 70 nm	7.0x10 ⁻⁶	11.642x10 ⁻¹⁴	3.0x10 ⁻⁵	3.0x10 ⁻⁵	1.546x10 ¹⁰	6.158x10 ⁻¹⁰	9.520
6	3D-MoS _x - 90 nm	9.0x10 ⁻⁶	24.743x10 ⁻¹⁴	3.0x10 ⁻⁵	3.0x10 ⁻⁵	7.275x10 ⁹	10.179x10 ⁻⁹	7.405
7	3D-MoS _x - 90 nm	9.0x10 ⁻⁶	24.743x10 ⁻¹⁴	5.0x10 ⁻⁵	5.0x10 ⁻⁵	1.212x10 ¹⁰	10.179x10 ⁻⁹	12.341
8	3D-MoS _x - 90 nm	9.0x10 ⁻⁶	24.743x10 ⁻¹⁴	7.0x10 ⁻⁵	7.0x10 ⁻⁵	1.697x1010	10.179x10 ⁻⁹	17.278
9	3D-MoS _x - 90 nm	9.0x10 ⁻⁶	24.743x10 ⁻¹⁴	11.0x10 ⁻⁵	11.0x10 ⁻⁵	2.667x10 ¹⁰	10.179x10 ⁻⁹	27.151

*The surface area of bulk MoS_x is considered as geometrical working electrodes area of 1 cm²