Supplemental Material

Facile synthesis of new N-(aminocycloalkylene)amino acid compounds using chiral triflate esters with N-Boc-aminopyrrolidines and N-Bocaminopiperidines

Gita Matulevičiūtė, ^{a,b} Neringa Kleizienė, ^a Greta Račkauskienė, ^a Vytas Martynaitis, ^b Aurimas Bieliauskas, ^a Urtė Šachlevičiūtė, ^a Rokas Jankauskas, ^a Martynas R. Bartkus, ^a Frank A. Sløk ^c and Algirdas Šačkus ^{*,a,b}

^a Institute of Synthetic Chemistry, Kaunas University of Technology,

K. Baršausko g. 59, Kaunas LT-51423, Lithuania;

 ^b Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania;

^c Vipergen ApS,

Gammel Kongevej 23A, Copenhagen V DK-1610, Denmark

* Corresponding authors

E-mail address: algirdas.sackus@ktu.lt (A. Šačkus), neringa.kleiziene@ktu.lt (N. Kleizienė)

Figure S1. Methyl (2*R*)-2-hydroxy-3-methylbutanoate ((*R*)-1b). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S2. Methyl (2*R*)-2-hydroxy-3-methylbutanoate ((*R*)-1b). ¹³C NMR spectrum (176 MHz, CDCl₃).

Compound Spectrum SmartFormula Report

Analysis Info

Analysis Name Method Sample Name Comment

D:\Data\GMP-959.d DirectInfusion_TuneLow_pos.m GMP-959 AB

Acquisition Date 5/2/2023 7:43:47 PM

Operator

hplc

Instrument micrOTOF-Q III 8228888.20448

#	RT [min]	Area	Int. Type	1	S/N	Chromatogram	Max. m/z	FWHM [min]
n.a.	6.1	n.a.	Single spectrum	n.a.	n.a.	n.a.	155.0680	n.a.

Figure S3. Methyl (2R)-2-hydroxy-3-methylbutanoate ((R)-1b). HRMS (ESI-TOF).

Figure S4. Methyl (2*S*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((*S*)-3a). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S5. Methyl (2*S*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((*S*)-3a). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S7. Methyl (2S)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((S)-3a). ¹H-¹⁵N HSQC spectrum (71 MHz, CDCl₃).

5.0 4.5 f2 (ppm) 4.0

3.5

3.0

2.5

2.0

5.5

7.5

7.0

6.5

6.0

8.0

{4.45,-285.30}

-300

-290

-280

- -270

1.5

Figure S8. Methyl (2*S*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((*S*)-3a). HRMS (ESI-TOF).

Figure S10. Methyl (2*R*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((*R*)-3a). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S11. Methyl (2*R*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((*R*)-3a). ¹H-¹⁵N HMBC spectrum (71 MHz, CDCl₃).

Figure S12. Methyl (2*R*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((*R*)-3a). ¹H-¹⁵N HSQC spectrum (71 MHz, CDCl₃).

Analysis Info

Acquisition Date 4/14/2023 4:05:49 PM

 Analysis Name
 D:\Data\Organikai\2023_04_11\GMP_371_1-B,2_01_10215.d

 Method
 organikai_esi_pos_2013_recover.m
 Operator
 Milda Pukalskiene

 Sample Name
 GMP_371
 Instrument / Ser# maXis 4G
 20218

 Comment
 Comment
 Comment
 Comment
 Comment

Acquisition Parameter

Figure S13. Methyl (2*R*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((*R*)-3a). HRMS (ESI-TOF).

Figure S15. Methyl (2*S*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-3-methylbutanoate ((*S*)-3b). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S16. Methyl (2*S*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-3-methylbutanoate ((*S*)-3b). HRMS (ESI-TOF).

Figure S18. Methyl (2*R*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-3-methylbutanoate ((*R*)-3b). ¹³C NMR spectrum (176 MHz, CDCl₃).

Analysis Info

Comment

Acquisition Date D:\Data\Organikai\2023_04_11\GMP_571_1-B,4_01_10217.d Analysis Name Method organikai_esi_pos_2013_recover.m Operator GMP 571 Sample Name

Milda Pukalskiene

4/14/2023 4:14:48 PM

Instrument / Ser# maXis 4G 20218

Figure S19. Methyl (2R)-2-{4-[(tert-butoxycarbonyl)amino]piperidin-1-yl}-3-methylbutanoate ((*R*)-3b). HRMS (ESI-TOF).

Figure S21. Methyl (2*S*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-4-methylpentanoat ((*S*)-3c). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S22. Methyl (2*S*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-4-methylpentanoate ((*S*)-3c). HRMS (ESI-TOF).

Figure S24. Methyl (2*R*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-4-methylpentanoate ((*R*)-3c). ¹³C NMR spectrum (176 MHz, CDCl₃).

Analysis Info Acquisition Date 4/14/2023 4:23:42 PM Analysis Name D:\Data\Organikai\2023_04_11\GMP_610_1-B,6_01_10219.d organikai_esi_pos_2013_recover.m Method Operator Milda Pukalskiene Instrument / Ser# Sample Name GMP_610 maXis 4G 20218 Comment Acquisition Parameter 1.5 Bar 180 °C 8.0 l/min Source Type Ion Polarity Positive Set Nebulizer ESI Focus Not active Set Dry Heater

Figure S25. Methyl (2*R*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-4-methylpentanoate ((*R*)-3c). HRMS (ESI-TOF).

Figure S26. Crude sample from reaction mixture of iminoboronate ester complex ((*S*,*R*)-5a). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S27. Crude sample from reaction mixture of iminoboronate ester complex ((R,R)-5a). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S28. Crude sample from reaction mixture of iminoboronate ester complex ((*S*,*R*)-5b). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S29. Crude sample from reaction mixture of iminoboronate ester complex ((R,R)-5b). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S30. Crude sample from reaction mixture of iminoboronate ester complex ((*S*,*R*)-5c). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S31. Crude sample from reaction mixture of iminoboronate ester complex ((*R*,*R*)-5c). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S32. (2*S*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoic acid ((*S*)-6). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S33. (2*S*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoic acid ((*S*)-6). ¹³C NMR spectrum (176 MHz, CDCl₃).

Compound Spectrum SmartFormula Report

Analysis Info

Analysis Name D:\Data\GMP-1188.d Method DirectInfusion_TuneLow_pos.m Sample Name GMP-1188 Comment AB

Acquisition Date 5/2/2023 8:28:21 PM

Operator hplc

Instrument micrOTOF-Q III 8228888.20448

#	RT [min]	Area	Int. Type	1	S/N	Chromatogram	Max. m/z	FWHM [min]
n.a.	6.6	n.a.	Single spectrum	n.a.	n.a.	n.a.	295.1630	n.a.

Figure S34. (2S)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoic acid ((S)-6). HRMS (ESI-TOF).

Figure S35. (2*R*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoic acid ((*R*)-6). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S36. (2*R*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoic acid ((*R*)-6). ¹³C NMR spectrum (176 MHz, CDCl₃).

Analysis Info Acquisition Date 4/21/2023 11:18:48 AM D:\Data\Organikai\2023_04_11\GMP_1189_1-C,2_01_10223.d Analysis Name Method organikai esi pos 2013 recover.m Operator Milda Pukalskiene GMP_1189 Sample Name Instrument / Ser# maXis 4G 20218 Comment Acquisition Parameter Source Type ESI Ion Polarity Positive Set Nebulizer 1.5 Bar Focus Not active Set Capillary 4500 V Set Dry Heater 180 °C Scan Begin 8.0 l/min Set End Plate Offset -500 V Set Dry Gas 40 m/z Scan End 1800 m/z Set Collision Cell RF 350.0 Vpp Set Divert Valve Waste Intens. x107 3.5 3.0

Figure S37. (2*R*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoic acid ((*R*)-6). HRMS (ESI-TOF).

Figure S38. Ethyl *N*-[(2*S*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoyl]-*L*-phenylalaninate ((*S*,*S*)-7). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S39. Ethyl *N*-[(2*S*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoyl]-*L*-phenylalaninate ((*S*,*S*)-7). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S40. Ethyl *N*-[(2*S*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoyl]-*L*-phenylalaninate ((*S*,*S*)-7). HRMS (ESI-TOF).

Figure S41. Ethyl *N*-[(2*R*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoyl]-*L*-phenylalaninate ((*R*,*S*)-7). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S42. Ethyl *N*-[(2*R*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoyl]-*L*-phenylalaninate ((*R*,*S*)-7). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S43. Ethyl *N*-[(2*R*)-2-{4-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoyl]-*L*-phenylalaninate ((*R*,*S*)-7). HRMS (ESI-TOF).

Figure S44. Ethyl *N*-[(2*S*)-2-{4-[(4-nitrobenzene-1-sulfonyl)amino]piperidin-1-yl}propanoyl]-*L*-phenylalaninate ((*S*,*S*)-9). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S45. Ethyl *N*-[(2*S*)-2-{4-[(4-nitrobenzene-1-sulfonyl)amino]piperidin-1-yl}propanoyl]-*L*-phenylalaninate ((*S*,*S*)-9). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S46. Ethyl *N*-[(2*S*)-2-{4-[(4-nitrobenzene-1-sulfonyl)amino]piperidin-1-yl}propanoyl]-*L*-phenylalaninate ((*S*,*S*)-9). ¹H-¹⁵N HMBC spectrum (71 MHz, CDCl₃).

Figure S47. Ethyl *N*-[(2*S*)-2-{4-[(4-nitrobenzene-1-sulfonyl)amino]piperidin-1-yl}propanoyl]-*L*-phenylalaninate ((*S*,*S*)-9). ¹H-¹⁵N HSQC spectrum (71 MHz, CDCl₃).

Analysis Info

Method

Comment

D:\Data\Organikai\2023_04_11\GMP_1217_1-C,7_01_10229.d Analysis Name organikai_esi_pos_2013_recover.m Operator GMP_1217 Sample Name

Acquisition Date 4/21/2023 1:56:42 PM

Milda Pukalskiene Instrument / Ser# maXis 4G 20218

Figure S48. Ethyl N-[(2S)-2-{4-[(4-nitrobenzene-1-sulfonyl)amino]piperidin-1-yl}propanoyl]-*L*-phenylalaninate ((*S*,*S*)-9). HRMS (ESI-TOF).

Figure S49. Ethyl *N*-[(2*R*)-2-{4-[(4-nitrobenzene-1-sulfonyl)amino]piperidin-1-yl}propanoyl]-*L*-phenylalaninate ((*R*,*S*)-9). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S50. Ethyl *N*-[(2*R*)-2-{4-[(4-nitrobenzene-1-sulfonyl)amino]piperidin-1-yl}propanoyl]-*L*-phenylalaninate ((*R*,*S*)-9). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S51. Ethyl *N*-[(2*R*)-2-{4-[(4-nitrobenzene-1-sulfonyl)amino]piperidin-1-yl}propanoyl]-*L*-phenylalaninate ((*R*,*S*)-9). ¹H-¹⁵N HMBC spectrum (71 MHz, CDCl₃).

Figure S52. Ethyl *N*-[(2*R*)-2-{4-[(4-nitrobenzene-1-sulfonyl)amino]piperidin-1-yl}propanoyl]-*L*-phenylalaninate ((*R*,*S*)-9). ¹H-¹⁵N HSQC spectrum (71 MHz, CDCl₃).

Analysis Info Acquisition Date 4/21/2023 1:52:14 PM Analysis Name D:\Data\Organikai\2023_04_11\GMP_1218_1-C,6_01_10228.d organikai_esi_pos_2013_recover.m Method Milda Pukalskiene Operator GMP_1218 Sample Name Instrument / Ser# maXis 4G 20218 Comment Acquisition Parameter Ion Polarity Positive 1.5 Bar Source Type **FSI** Set Nebulizer 180 °C Not active Set Capillary 4500 V Set Dry Heater Focus 8.0 l/min Scan Begin Scan End Set End Plate Offset 40 m/z 1800 m/z -500 V Set Dry Gas Set Collision Cell RF 350.0 Vpp Set Divert Valve Waste Intens. x10⁶ 3 2 1 0[±] 1.0 1.5 0.5 2.0 2.5 Time [min] Intens. +MS, 0.9min #(51) x10⁵ 4 533.2066 3 2 398.2325

Figure S53. Ethyl *N*-[(2*R*)-2-{4-[(4-nitrobenzene-1-sulfonyl)amino]piperidin-1-yl}propanoyl]-*L*-phenylalaninate ((*R*,*S*)-9). HRMS (ESI-TOF).

796.7373

800

Score

48.79

100.00

50.43

48.33

1000

m/z

533.2051

533.2064

533.2076

533.2071

1200

Mean

[ppm]

err

-3.1

-0.6

2.4

1.7

err

-2.8

-0.3

1.9

0.9

[ppm]

1400

mSig

ma

17.8

18.0

29.4

41.4

1600

e[–]

Conf

even

even

even

even

rdb

6.5

11.5

2.5

20.5

m/ż

N-R

ule

ok

ok

ok

ok

185.1172

200

#

1 2

3

4

Meas. m/z

533.2066

400

C 24 H 37 O 11 S

C 33 H 29 N 2 O 5

C 20 H 37 O 16

C 25 H 33 N 4 O 7 S

Formula

600

1

n

Figure S55. Methyl (2*S*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((2*S*,3*R*)-10a). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S56. Methyl (2S)-2-{(3R)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((2S,3R)-10a). ¹H-¹⁵N HMBC spectrum (71 MHz, CDCl₃).

Figure S57. Methyl (2*S*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((2*S*,3*R*)-10a). ¹H-¹⁵N HSQC spectrum (71 MHz, CDCl₃).
Analysis Info Acquisition Date 4/21/2023 2:01:08 PM D:\Data\Organikai\2023_04_11\GMP_367_1-C,8_01_10230.d Analysis Name Milda Pukalskiene Method organikai_esi_pos_2013_recover.m Operator GMP_367 Sample Name Instrument / Ser# maXis 4G 20218 Comment Acquisition Parameter 1.5 Bar 180 °C 8.0 l/min Source Type ESI Ion Polarity Positive Set Nebulizer Focus Not active Set Capillary 4500 V Set Dry Heater Set End Plate Offset -500 V Scan Begin 40 m/z Set Dry Gas 1800 m/z Set Collision Cell RF 350.0 Vpp Scan End Set Divert Valve Waste Intens. x10⁶ 41 3 2 1

err [ppm] Mean err [ppm] mSigma C 14 H 27 N 2 O 4 287.1968 100.00 287.1965 -0.9 -0.7 2.5 1 13.3 even ok Figure S58. Methyl (2S)-2-{(3R)-3-[(tert-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((2S,3R)-10a). HRMS (ESI-TOF).

Figure S60. Methyl (2*R*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((2*R*,3*S*)-10a). ¹³C NMR spectrum (176 MHz, CDCl₃).

20218

Analysis Info

Acquisition Date 4/21/2023 2:14:25 PM Analysis Name D:\Data\Organikai\2023_04_11\GMP_462_1-D,3_01_10233.d Method organikai esi pos 2013 recover.m Operator Milda Pukalskiene GMP 462 Sample Name Instrument / Ser# maXis 4G

Figure S61. Methyl (2R)-2-{(3S)-3-[(tert-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((2*R*,3*S*)-10a). HRMS (ESI-TOF).

Figure S63. Methyl (2S)-2-{(3S)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((2S,3S)-10a). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S64. Methyl (2S)-2-{(3S)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((2S,3S)-10a). ¹H-¹⁵N HMBC spectrum (71 MHz, CDCl₃).

Figure S65. Methyl (2S)-2-{(3S)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((2S,3S)-10a). ¹H-¹⁵N HSQC spectrum (71 MHz, CDCl₃).

Figure S66. Methyl (2S)-2-{(3S)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((2S,3S)-10a). HRMS (ESI-TOF).

Figure S68. Methyl (2*R*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((2*R*,3*R*)-10a). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S70. Methyl (2*R*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((2*R*,3*R*)-10a). ¹H-¹⁵N HSQC spectrum (71 MHz, CDCl₃).

Analysis Info Acquisition Date 4/21/2023 2:05:33 PM D:\Data\Organikai\2023_04_11\GMP_379_1-D,1_01_10231.d Analysis Name organikai esi pos 2013 recover.m Milda Pukalskiene Method Operator GMP 379 Sample Name Instrument / Ser# maXis 4G 20218 Comment Acquisition Parameter Source Type ESI Ion Polarity Positive Set Nebulizer 1.5 Bar Focus Not active Set Capillary 4500 V Set Dry Heater 180 °C Scan Begin 40 m/z Set End Plate Offset -500 V Set Dry Gas 8.0 l/min 1800 m/z Scan End Set Collision Cell RF 350.0 Vpp Set Divert Valve Waste Intens. x10⁶ 4 3 2 13 0 0.5 1.0 1.5 2.0 2.5 Time [min] Intens. +MS, 1.1min #(67) x10⁵ 6

Figure S71. Methyl (2*R*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}propanoate ((2*R*,3*R*)-10a). HRMS (ESI-TOF).

Figure S73. Methyl (2*S*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-3-methylbutanoate ((2*S*,3*R*)-10b). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S74. Methyl (2*S*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-3-methylbutanoate ((2*S*,3*R*)-10b). HRMS (ESI-TOF).

Figure S75. Methyl (2*R*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-3-methylbutanoate ((2*R*,3*S*)-10b). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S76. Methyl (2*R*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-3-methylbutanoate ((2*R*,3*S*)-10b). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S77. Methyl (2*R*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-3-methylbutanoate ((2*R*,3*S*)-10b). HRMS (ESI-TOF).

Figure S78. Methyl (2S)-2-{(3S)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-3-methylbutanoate ((2S,3S)-10b). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S79. Methyl (2S)-2-{(3S)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-3-methylbutanoate ((2S,3S)-10b). ¹³C NMR spectrum (176 MHz, CDCl₃).

Mean err [ppm] # Score m/z rdb e⁻Conf N-Rule Meas. m/z Formula err [ppm] mSigma 1 C 16 H 31 N 2 O 4 100.00 315.2280 315.2278 -0.6 -0.3 19.2 2.5 even ok Figure S80. Methyl (2S)-2-{(3S)-3-[(tert-butoxycarbonyl)amino]piperidin-1-yl}-3methylbutanoate ((2S,3S)-10b). HRMS (ESI-TOF).

m/ż

Figure S82. Methyl (2*R*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-3-methylbutanoate ((2*R*,3*R*)-10b). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S83. Methyl (2*R*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-3methylbutanoate ((2*R*,3*R*)-10b). HRMS (ESI-TOF).

Figure S85. Methyl (2S)-2-{(3R)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-4-methylpentanoate ((2S,3R)-10c). ¹³C NMR spectrum (176 MHz, CDCl₃).

methylpentanoate ((2S,3R)-10c). HRMS (ESI-TOF).

Figure S88. Methyl (2*R*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-4-methylpentanoate ((2*R*,3*S*)-10c). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S89. Methyl (2*R*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-4-methylpentanoate ((2*R*,3*S*)-10c). HRMS (ESI-TOF).

Figure S91. Methyl (2S)-2-{(3S)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-4methylpentanoate ((2S,3S)-10c). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S92. Methyl (2*S*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-4-methylpentanoate ((2*S*,3*S*)-10c). HRMS (ESI-TOF).

Figure S93. Methyl (2*R*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]piperidin-1-yl}-4-methylpentanoate ((2*R*,3*R*)-10c). ¹H NMR spectrum (700 MHz, CDCl₃).

methylpentanoate ((2R,3R)-10c). ¹³C NMR spectrum (176 MHz, CDCl₃).

methylpentanoate ((2R,3R)-10c). HRMS (ESI-TOF).

Figure S97. Methyl (2*S*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}propanoate ((2*S*,3*R*)-11a). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S99. Methyl (2S)-2-{(3R)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}propanoate ((2S,3R)-11a). ¹H-¹⁵N HSQC spectrum (71 MHz, CDCl₃).

Figure S100. Methyl (2*S*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}propanoate ((2*S*,3*R*)-11a). HRMS (ESI-TOF).

Figure S101. Methyl (2*R*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}propanoate ((2*R*,3*S*)-11a). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S102. Methyl (2*R*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}propanoate ((2*R*,3*S*)-11a). ¹³C NMR spectrum (176 MHz, CDCl₃).

Analysis Info

Method

Comment

D:\Data\Organikai\2023_04_11\GMP_482_1-D,7_01_10237.d Analysis Name organikai_esi_pos_2013_recover.m Operator Sample Name GMP 482

Acquisition Date 4/21/2023 2:32:19 PM

Milda Pukalskiene Instrument / Ser# maXis 4G 20218

Figure S103. Methyl (2R)-2-{(3S)-3-[(tert-butoxycarbonyl)amino]pyrrolidin-1-yl}propanoate ((2R,3S)-11a). HRMS (ESI-TOF).

140 130 120 110 100 90 f1 (ppm) Figure S105. Methyl (2S)-2-{(3S)-3-[(tert-butoxycarbonyl)amino]pyrrolidin-1-yl}propanoate ((2S,3S)-11a). ¹³C NMR spectrum (176 MHz, CDCl₃).

80 70

 o -10 -2

Figure S106. Methyl (2*S*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}propanoate ((2*S*,3*S*)-11a). ¹H-¹⁵N HMBC spectrum (71 MHz, CDCl₃).

Figure S107. Methyl (2S)-2-{(3S)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}propanoate ((2S,3S)-11a). HRMS (ESI-TOF).

Figure S109. Methyl (2*R*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}propanoate ((2*R*,3*R*)-11a). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S110. Methyl (2*R*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}propanoate ((2*R*,3*R*)-11a). HRMS (ESI-TOF).

Figure S111. Methyl (2*S*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-3-methylbutanoate ((2*S*,3*R*)-11b). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S112. Methyl (2*S*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-3-methylbutanoate ((2*S*,3*R*)-11b). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S113. Methyl (2*S*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-3-methylbutanoate ((2*S*,3*R*)-11b). HRMS (ESI-TOF).

Figure S114. Methyl (2*R*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-3-methylbutanoate ((2*R*,3*S*)-11b). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S115. Methyl (2*R*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-3-methylbutanoate ((2*R*,3*S*)-11b). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S116. Methyl (2*R*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-3-methylbutanoate ((2*R*,3*S*)-11b). HRMS (ESI-TOF).

Figure S118. Methyl (2*S*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-3-methylbutanoate ((2*S*,3*S*)-11b). ¹³C NMR spectrum (176 MHz, CDCl₃).

Compound Spectrum SmartFormula Report

Analysis Info

Analysis Name Method Sample Name Comment

D:\Data\GMP-569.d DirectInfusion_TuneLow_pos.m **GMP-569** AB

Acquisition Date 5/2/2023 7:57:07 PM

Operator

hplc

Instrument micrOTOF-Q III 8228888.20448

Acquisition Par	rameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar	
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	180 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min	
Scan End	1000 m/z	Set Collision Cell RF	140.0 Vpp	Set Divert Valve	Waste	

#	RT [min]	Area	Int. Type	- I	S/N	Chromatogram	Max. m/z	FWHM [min]
n.a.	6.0	n.a.	Single spectrum	n.a.	n.a.	n.a.	323.1940	n.a.

Figure S119. Methyl (2S)-2-{(3S)-3-[(tert-butoxycarbonyl)amino]pyrrolidin-1-yl}-3methylbutanoate ((2S,3S)-11b). HRMS (ESI-TOF).

Figure S120. Methyl (2*R*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-3-methylbutanoate ((2*R*,3*R*)-11b). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S121. Methyl (2*R*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-3-methylbutanoate ((2*R*,3*R*)-11b). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S122. Methyl (2*R*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-3-methylbutanoate ((2*R*,3*R*)-11b). HRMS (ESI-TOF).

Figure S124. Methyl (2*S*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-4methylpentanoate ((2*S*,3*R*)-11c). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S125. Methyl (2*S*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-4-methylpentanoate ((2*S*,3*R*)-11c). HRMS (ESI-TOF).

Figure S126. Methyl (2*R*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-4-methylpentanoate ((2*R*,3*S*)-11c). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S127. Methyl (2*R*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-4-methylpentanoate ((2*R*,3*S*)-11c). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S128. Methyl (2*R*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-4-methylpentanoate ((2*R*,3*S*)-11c). HRMS (ESI-TOF).

Figure S130. Methyl (2S)-2-{(3S)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-4methylpentanoate ((2S,3S)-11c). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S131. Methyl (2*S*)-2-{(3*S*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-4-methylpentanoate ((2*S*,3*S*)-11c). HRMS (ESI-TOF).

Figure S132. Methyl (2*R*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-4methylpentanoate ((2*R*,3*R*)-11c). ¹H NMR spectrum (700 MHz, CDCl₃).

Figure S133. Methyl (2*R*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-4methylpentanoate ((2*R*,3*R*)-11c). ¹³C NMR spectrum (176 MHz, CDCl₃).

Figure S134. Methyl (2*R*)-2-{(3*R*)-3-[(*tert*-butoxycarbonyl)amino]pyrrolidin-1-yl}-4-methylpentanoate ((2*R*,3*R*)-11c). HRMS (ESI-TOF).

• X-ray analysis of compound (S)-3b:

Single crystals of $C_{32}H_{60}N_4O_8$ [(*S*)-**3b**] were investigated on a Rigaku, XtaLAB Synergy, Dualflex, HyPix diffractometer. The crystal was kept at 150.0(1) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the olex2.refine [3] refinement package using Gauss-Newton minimisation.

Sample Machine Source Temp. Detector Time/ **#Frames** Frame CCDC distance Frame width ۲°-[K] [mm] [S] (S)-**3b** Rigaku, $\mu(Cu K\alpha) =$ 150 34 1.25 5748 0.50 2168602 0.669mm⁻¹ XtaLAB Synergy, Dualflex, HyPix

Table S1: Experimental parameter and CCDC-2168602.

Chemical formula	$2(C_{16}H_{30}N_2O_4)$	Crystal system	Monocli	nic
Formula weight [g/mol]	628.86	Space group	$P2_{1}$	
Temperature [K]	150	Ζ	2	
Measurement method	ϕ and ω scans	Volume [Å ³]	1805.08(5)	
Radiation vawelength [Å]	1.54184	Unit cell	10.0924(2)	90
_		dimensions [Å ³]	12.8242(2)	97.425(2)
		and [°]	14.0647(2)	90
Crystal size/ [mm ³]	$0.17 \times 0.11 \times 0.08$			
Crystal habit	Block, colourless			
Density (calculated)/	1.1569	Absorption	0.669)
[g/cm ³]		coefficient [mm ⁻¹]		
Abs. Correction T _{min}	0.859	Abs. Correction	0.961	
		T _{max}		
Abs. Correction type	multi-scan	F(000) [e ⁻]	688	
	CrysAlis PRO			
	1.171.40.35a			
	(Rigaku Oxford			
	Diffraction, 2018)			
	Empirical			
	absorption			
	correction using			
	spherical			
	harmonics,			
	implemented in			
	SCALE3			
	ABSPACK scaling			
	algorithm.			

Table S2: Sample and crystal data of compound (*S*)-3b.

Figure S135. ORTEP view of assymetric unit of crystal (*S*)-3b.

Index ranges	$-12 \le h \le 12$ $-16 \le k \le 13$ $-17 \le 1 \le 17$	2θ range for data collection [°]	155.0	
Reflections numbers	37496	Data / restraints / parameters	6342/1/417	
Refinement method	Least squares matrix: full	Final R indices	All data	R1 = 0.0316; wR2 = 0.0840
Function minimized	$\Sigma w[Fo ^2 - (1/k) Fc ^2]$		I > 2σ(I)	R1 = 0.0309; wR2 = 0.0835
Goodness-of-fit on F2	1.052	Weighting scheme	$w = 1/[\sigma^2(F_o^2) + (0.052P)^2 + 0.1876P]$ where $P = (F_o^2 + 2F_c^2)/3$	
Largest diff. peak and hole [e Å-3]	+0.20 and -0.12	Flack's x parameter	0.04(9)	

Table S3: Data collection and structure refinement of compound (*S*)-3b.

• X-ray analysis of compound (*R*)-3b:

Single crystals of $C_{32}H_{60}N_4O_8$ [(*R*)-3b] were investigated on a Rigaku, XtaLAB Synergy, Dualflex, HyPix diffractometer. The crystal was kept at 150.0(1) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the olex2.refine [3] refinement package using Gauss-Newton minimisation.

Sample Machine Source Temp. Detector Time/ **#Frames** Frame CCDC width distance Frame [K] [mm] Lo. [S] (**R**)-3b Rigaku, $\mu(Cu K\alpha) =$ 150 34 1.25 5748 0.50 2168596 0.669 mm⁻¹ XtaLAB Synergy, Dualflex, HyPix

Table S4: Experimental parameter and CCDC-2168596

Chemical formula	$2(C_{16}H_{30}N_2O_4)$	Crystal system	Monoc	linic
Formula weight	628.86	Space group	P2	1
[g/mol]				
Temperature [K]	150	Ζ	2	
Measurement method	ϕ and ω scans	Volume [Å ³]	1802.2	5(4)
Radiation vawelength	1.54184	Unit cell	10.0869(1)	90
[Å]		dimensions [Å ³]	12.8088(2)	97.4889(12)
		and [°]	14.0693(2)	90
Crystal size/ [mm ³]	$0.18 \times 0.11 \times 0.08$			
Crystal habit	Colourless block			
Density (calculated)/	1.1587	Absorption	0.67	0
[g/cm ³]		coefficient [mm ⁻¹]		
Abs. Correction T _{min}	0.872	Abs. Correction	0.96	50
		T _{max}		
Abs. Correction type	multi-scan	F(000) [e ⁻]	688	3
	CrysAlis PRO			
	1.171.40.35a (Rigaku			
	Oxford Diffraction,			
	2018) Empirical			
	absorption correction			
	using spherical			
	harmonics,			
	implemented in			
	SCALE3 ABSPACK			
	scaling algorithm.			

Table S5: Sample and crystal data of compound (*R*)-3b.

Figure S136. ORTEP view of assymetric unit of crystal (*R*)-3b.

Table S6: Data collection and structure refinement of compound (*R*)-3b.

Index ranges	$-12 \le h \le 9$	2θ range for	155.0	
	$-16 \le k \le 16$	data collection		
	$-17 \le l \le 17$	[°]		
Reflections numbers	22287	Data /	7121/1/41	7
		restraints /		
		parameters		
Refinement method	Least squares matrix: full	Final R indices	All data	R1 = 0.0314;
				wR2 = 0.0818
Function minimized	$\Sigma w[Fo ^2 - (1/k) Fc ^2]$		$I > 2\sigma(I)$	R1 = 0.0306;
				wR2 = 0.0804
Goodness-of-fit on F2	1.051	Weighting	$w = 1/[\sigma^2(F_o^2) + (0.0P)^2 + 0.2072P]$	
		scheme	where <i>P</i> =	$=(F_{\rm o}^2+2F_{\rm c}^2)/3$
Largest diff. peak and	+0.14 and -0.19	Flack's x parameter	0.06(8)	
hole [e Å ⁻³]				

• Examples of unsuccessful HPLC analysis

Analysis were performed using Shimadzu LC2030C chromatograph with chiral columns and water + 0.1% formic acid / acetonitrile (various gradient conditions).

Mobile phase	A – Acetonitrile
	B – Water + 0.1% formic acid
Temperature	36 °C
Flow rate	1 mL/min
Detection	UV (254, 210 nm); ELSD (Evaporative light
	scattering detector)
Injection	10 µL
Sample	Dissolved in methanol

 Table S7. Experimental parameter.

Figure S137. Unsuccessful chiral HPLC analysis of compounds (*S*)-**3a** and (*R*)-**3a**. Separation was carried out on YMC chiral column CHIRAL NEA (R), gradient conditions water + 0.1% formic acid / acetonitrile 90:10 to 20:80 in 15 minutes. UV detector, 210 nm.

Figure S138. Unsuccessful chiral HPLC analysis of compounds (*S*)-**3b** and (*R*)-**3b**. Separation was carried out on chiral column CHIRAL ART Cellulose-SB, gradient conditions: water + 0.1% formic acid / acetonitrile 90:10 to 60:40 in 12 minutes. UV detector, 210 nm.

Figure S139. Unsuccessful chiral HPLC analysis of compounds (*S*)-4a and (*R*)-4a. Separation was carried out on YMC chiral column CHIRAL NEA (R), gradient conditions: water + 0.1% formic acid / acetonitrile 90:10 to 20:80 in 15 minutes. UV detector, 254 nm.

Figure S140. Unsuccessful chiral HPLC analysis of compounds (*S*)-6 and (*R*)-6. Separation was carried out on YMC chiral column CHIRAL NEA (R), gradient conditions water + 0.1% formic acid / acetonitrile 90:10 to 20:80 in 15 minutes. Evaporative light scattering detector.

Figure S141. Unsuccessful chiral HPLC analysis of compounds (*S*,*S*)-**9** and (*R*,*S*)-**9**. Separation was carried out on chiral column CHIRAL ART Cellulose-SB, gradient conditions: water + 0.1% formic acid / acetonitrile 85:15 to 60:40 in 10 minutes. UV detector, 254 nm wavelength.

• References:

- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2015). Acta Cryst. A71, 59-75.