Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supporting information

User-friendly and ultra-stable all-inclusive gold tablets for cysteamine detection

Muna Al-Kassawneh¹, Zubi Sadiq¹ and Sana Jahanshahi-Anbuhi^{1,*}

¹Department of Chemical and Materials Engineering, Gina Cody School of Engineering,

Concordia University, Montréal, Québec, Canada

*Address correspondence to Sana Jahanshahi-Anbuhi, sana.anbuhi@concordia.ca

Content

Figure S 1. The AFM images of the pAuNPs-Tablet particles showing height trace of tablet surface2
Figure S 2. The UV-vis spectra of pAuNPs-Tablet in the presence of (200 and 500 μ M) cysteamine3
Figure S 3. The FTIR analyses after centrifugal and washing of the pAuNPs-Tablet-cysteamine solutions.
Figure S 4. The DLS analyses of the pAuNPs-Tablet-cysteamine complex4
Figure S 5. The catalytic activity test using the conversion of 4-Nitrophenol (4-NP) (yellow) to 4-
Aminophenol (4-AP) (colorless) in the presence of pAuNPs-Tablet.
Figure S 6. The absorbance spectra of other amino acids that might be present in human serum
Figure S 7. Analytical performance of the tablet-based sensor in real human serum samples
Figure S 8. The stability analyses of pAuNPs-Tablet showing the ultra stable properties compared to
pAuNPs-Solution over a period of ~16 months7

List of abbreviations:

AuNPs	gold nanoparticles
pAuNPs-Solution	pullulan capped gold nanoparticles solution
pAuNPs-Tablet	pullulan capped gold nanoparticles tablets
%R	Recovery percentage
%RSD	Relative standard deviation
TMB	3,3', 5,5'-tetramethylbenzidine

Figure S 1. The AFM images of the pAuNPs-Tablet particles show a height trace of the tablet surface. A) 2D image of height profile of pAuNPs-Tablet in an amplitude trace; **B and C**) 3D image of height profile of A; **D**) Height distribution as surface roughness and texture description along the black line area of image A. The average roughness was ~ 1.8 nm, the average maximum height of the roughness was ~ 10 nm, the average maximum roughness valley depth was ~ 6.6 nm, the maximum peak to valley roughness was ~ 18 nm and the waviness average was ~ 1.15 nm. The results confirmed that the strong binding between pullulan and AuNPs occurred.

Figure S 2. The UV-vis spectra of pAuNPs-Tablet in the presence of (200 and 500 μ M) cysteamine. A 200 μ M of cysteamine could not cause the aggregation of pAuNPs-Tablet while 500 μ M caused the aggregation. Considering the higher concentrations of cysteamine cause aggregation of pAuNPs-Tablet based on LSPR, the peroxidase-like activity method is the resolution for cysteamine detection to achieve lower LoD.

Figure S 3. The FTIR analyses after centrifugal and washing of the pAuNPs-Tablet-cysteamine solutions. The FTIR spectrum of the washed pAuNPs-Tablet + 200 μ M cysteamine exhibited extra strong peaks arising from the -SH bend and -NH stretch due to the presence of pAuNPs-Tablet-cysteamine complex even after washing the catalyst. The absence of -SH and -NH peaks in the

pristine pAuNPs-Tablet + 60μ M cysteamine indicates the pAuNPs-Tablet-cysteamine complex formation is dependent on cysteamine concentration.

Figure S 4. The DLS analyses of the pAuNPs-Tablet-cysteamine complex. **A)** The ζ -potential analysis displays a decrease in ζ -potential value from-9 to -2 mV. **B)** An increase in the hydrodynamic diameter from 91.77 nm with PDI% of 24% to 785 nm with 46%, respectively indicating the formation of a complex of nanoparticles.

Figure S 5. The catalytic activity test using the conversion of 4-Nitrophenol (4-NP) (yellow) to 4-Aminophenol (4-AP) (colorless) in the presence of pAuNPs-Tablet. **A)** A higher catalytic activity was observed using 100 μ M pAuNPs-Solution to cast pAuNPs-Tablet. **B)** The catalytic activity in the presence and absence of 200 μ M cysteamine. The conversion of 4-NP into 4-AP was completed using pAuNPs-Tablet. While the conversion was blocked in the presence of 200 μ M cysteamine. **C)** The reaction rate in the presence of (0, 60, and 200 μ M) cysteamine shows a very fast conversion when 0 μ M cysteamine. Whereas a slower reaction was noticed in the presence of 60 μ M cysteamine. Almost no conversion was achieved in the case of 200 μ M cysteamine which was comparable to the color of the blank. **D)** The Langmuir-Hinshelwood model to calculate the apparent reaction constant (k_{app}) shows a fast reaction in the case of 0 μ M cysteamine while a very low (k_{app}) was observed in 200 μ M cysteamine indicating that pAuNPs-Tablet-cysteamine complex prevented the conversion of 4-NP to 4-AP.

Figure S 6. The absorbance spectra of other amino acids that might be present in human serum. The results display that only cysteamine could inhibit the peroxidase-like activity of pAuNPs-Tablet due to the high presence of cysteamine in human serum after 30 min of digestion of the cysteamine.

Figure S 7. Analytical performance of the tablet-based sensor in real human serum samples. The calibration curve was attained by testing the sensor with the known concentrations of 60, 70, and 100 μ M cysteamine in real human serum samples. A Hill function was fit to the whole data with an R² > 0.99, showing the compatibility of the data with a standard saturation model. Each data point is the mean ± standard deviation of the replications (n = 3)

Figure S 8. The stability analyses of pAuNPs-Tablet show ultra-stable properties compared to pAuNPs-Solution over a period of ~16 months.