Iron(II) Carboxylates and Simple Carboxamides: An Inexpensive and Modular Catalyst System for the Synthesis of PLLA and PLLA-PCL Block Copolymers

Supporting Information

Sarah Kirchhecker¹, Ngoc Nguyen², Stefan Reichert³, Karola Lützow¹, Paul Eselem Bungu¹, Axel Jacobi von Wangelin³, Sebastian Sandl³ and Axel T. Neffe^{1,2*}

1: Institute for Active Polymers, Helmholtz Zentrum Hereon, Kantstr. 55, 14513 Teltow, Germany

2: Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany

3: Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany

*: to whom correspondence should be addressed: <u>axel.neffe@hereon.de</u>

- S1. NMR spectrum of PLLA indicating peaks used for calculations
- S2. Formulas used for calculations
- S3. MALDI and GPC spectra of PLLA synthesized with different amide adjuncts
- S4. PLLA polymerized with Fe(OPv)₂ and different amides as catalyst
- S5. MALDI and GPC spectra of PLLA at different molar masses
- S6. Kinetics of LL and CL homo- and copolymerisations
- S7. NMR spectrum of copolymer indicating the peaks used for calculations
- S8. GPC traces of copolymers
- S9. MALDI spectra of selected copolymers
- S10. Glycolide copolymerisation
- S11. DSC investigations /thermal transitions

Figure S1. NMR spectrum of PLLA indicating the peaks used for calculation of conversion, M_n and incorporation of initiator

The determination of the number average molecular weight Mn from the ¹H spectra was performed by comparing the integrals of the CH_2 -O group of the initiator (4.11–3.96 ppm) with the CH protons of the lactic acid unit (5.33–4.86 and 4.37–4.22 ppm).

S2. Formulas used for calculations in Table 1

Conversion =
$$\frac{(I_{H_{\alpha,polylactide}} + I_{H_{\alpha,terminal \, lactide}})}{(I_{H_{\alpha,polylactide}} + I_{H_{\alpha,terminal \, lactide}} + I_{H_{\alpha,monomer}})}$$
Eq. 1

$$= 100\% \cdot \frac{I_{H_{\alpha, terminal lactide}}}{(I_{H_{\alpha, terminal lactide}} - \frac{I_{CH_2O_{Ini.}}}{2})}$$
Eq. 2

%telechelic

$$M_{n,\text{telechel}} = \frac{2 \cdot \frac{2(I_{H_{\alpha,polylactide}} + I_{H_{\alpha,terminal \, lactide}})}{I_{CH_2O_{Ini.}}} \cdot 72.07 \, g \cdot mol^{-1} + 146.227 \, g \cdot mol^{-1}$$
Eq. 3

$$\mathsf{M}_{n,\text{OH-initialized}} = \left(\frac{H_{\alpha,polylactide}}{H_{\alpha,terminal\,lactide}} + 1\right) \cdot 72.07 \ g \cdot mol^{-1} + 18.015 \ g \cdot mol^{-1}$$
Eq. 4

 $M_{n}(NMR) = \frac{\% \ telechelic}{100} \cdot M_{n,telechel} + (1 - \frac{\% \ telechelic}{100}) \cdot M_{n,OH-initialized}$ Eq. 5

S3. MALDI spectra and GPC chromatogrammes of PLLA synthesized with different amides

Figure S3.1.1 MALDI spectrum of PLLA-EAA

Figure S3.1.2 GPC chromatogramme of PLLA-EAA (measured in duplicate)

Figure S3.2.1 MALDI spectrum of PLLA-DEAA

Figure S3.2.2 GPC chromatogramme of PLLA-DEAA (measured in duplicate)

Figure S3.3.1 MALDI spectrum of PLLA-DMAA

Figure S3.3.2 GPC chromatogramme of PLLA-DMAA (measured in duplicate)

*: In-(LA)_x+Na⁺ (x = 2n) #:[In-(LA)_x+K⁺]*f + [H₂O-(LA)_{x+2}+Na⁺](x = 2n) +: [H₂O-(LA)_{x+2}+K⁺]*f (x = 2n) §: In-(LA)_x+H⁺ (x = 2n) *: In-(LA)_x+Na⁺ (x = 2n+1) #:[In-(LA)_x+K⁺]*f + [H₂O-(LA)_{x+2}+Na⁺](x = 2n+1) +: [H₂O-(LA)_{x+2}+K⁺]*f (x = 2n+1) §' In-(LA)_x+H⁺ (x = 2n+1)

NB: these MALDI measurements were performed on a different machine without an added Na⁺ source, therefore the spectra are more complex

Figure S3.4 MALDI spectrum of PLLA-tBuAA

*: In-(LA)_x+Na⁺ (x = 2n) #:[In-(LA)_x+K⁺]*f + [H₂O-(LA)_{x+2}+Na⁺](x = 2n) +: [H₂O-(LA)_{x+2}+K⁺]*f (x = 2n) : In-(LA)_x+H⁺ (x = 2n) *: In-(LA)_x+Na⁺ (x = 2n+1) #:[In-(LA)_x+K⁺]*f + [H₂O-(LA)_{x+2}+Na⁺](x = 2n+1) +: [H₂O-(LA)_{x+2}+K⁺]*f (x = 2n+1) * In-(LA)_x+H⁺ (x = 2n+1), : In-(LA)_x+FeOAc⁺ (x = 2n), : In-(LA)_x+FeOAc⁺ (x = 2n+1)

Figure S3.5 MALDI spectrum of PLLA-AcAn

$$\label{eq:constraint} \begin{split} & \text{*: In-}(LA)_x + Na^+ \ (x = 2n) \ \text{\#:}[In-(LA)_x + K^+] * f + [H_2O-(LA)_{x+2} + Na^+](x = 2n) \ \text{+: }[H_2O-(LA)_{x+2} + K^+] * f \ (x = 2n) \ \text{\&: In-}(LA)_x + H^+ \ (x = 2n) \ \text{\&: }[In-(LA)_x + K^+] * f \ (x = 2n+1) \ \text{\&: }[In-(LA)_x + K^+] * f \ (x = 2n+1) \ \text{\&: }[H_2O-(LA)_{x+2} + Na^+](x = 2n+1) \ \text{\&: }[H_2O-(LA)_{x+2} + K^+] * f \ (x =$$

Figure S3.6 MALDI spectrum of PLLA-DMAAP

$$\label{eq:hardenergy} \begin{split} & *: \text{In-}(\text{LA})_x + \text{Na}^+ \ (x = 2n) \ \#: [\text{In-}(\text{LA})_x + \text{K}^+] * f + [\text{H}_2\text{O-}(\text{LA})_{x+2} + \text{Na}^+] (x = 2n) \ +: [\text{H}_2\text{O-}(\text{LA})_{x+2} + \text{K}^+] * f \ (x = 2n) \ \$: \text{In-}(\text{LA})_x + \text{H}^+ \ (x = 2n) \ *: \text{In-}(\text{LA})_x + \text{Na}^+ \ (x = 2n+1) \ \ \#: [\text{In-}(\text{LA})_x + \text{K}^+] * f \ (x = 2n+1) \ \ \#: [\text{H}_2\text{O-}(\text{LA})_{x+2} + \text{Na}^+] (x = 2n+1) \ \ +: [\text{H}_2\text{O-}(\text{LA})_{x+2} + \text{K}^+] * f \ (x = 2n+1) \ \ \$: \text{In-}(\text{LA})_x + \text{H}^+ \ (x = 2n+1) \ \ \$: \text{In-}(\text{LA})_x + \text{H}^+ \ (x = 2n+1) \ \ \$: \text{In-}(\text{LA})_x + \text{H}^+ \ (x = 2n+1) \ \ \$: \text{In-}(\text{LA})_x + \text{In-}(\text{In-}(\text{LA})_x + \text{In-}(\text{I$$

Figure S3.7 MALDI spectrum of PLLA-CIDEAA

Figure S3.8 GPC and MALDI analysis of **PLLA-urea**. A) MALDI spectrum, B) GPC chromatogramme indicating the fractions collected. C) MALDI spectra of fractionations with the corresponding polymers structures.

Figure S3.9.1 MALDI spectrum of PLLA-TMU

Figure S3.9.2 GPC chromatogramme of PLLA-TMU (measured in duplicate)

S4. Polymerisation of L-lactide with $Fe(OPv)_2$ and amides as catalyst

Polymer	Conversion	Ini	M _n	M _n	M _w	Ð	2n:2n+1
	[%]	[%]	NMR	MALDI	MALDI		[%]
			[g mol ⁻¹]	[g mol⁻¹]	[g mol ⁻¹]		
Piv-EAA	98	84	7550	1175	1260	1.07	64
Piv-DEAA	89	93	10190			1.89	42
				1435	2715		
Piv-tBuAA	50	83	5100	2220	3180	1.43	54
Piv-AcAn	43	92	4330	2545	3325	1.31	53
Piv-DMAAp	20	86	1800		Not acquired		
Piv-CIDEAA	32	46	2440	2635	3005	1.14	66
Piv-Urea	86	40	2400	Not aquired			
Piv-DMUrea	73	23	1040	Not acquired			

 Table S4.1
 NMR and MALDI analysis of PLLA synthesised with Fe(OPiv)2

S5. MALDI spectra and GPC chromatogrammes of PLLA with targeted molecular weights

Figure S5.1.1 GPC chromatogramme of PLLA-DEAA-5k (measured in duplicate)

Figure S5.1.2 MALDI spectrum for PLLA-DEAA-5k

Figure S5.2.1 GPC chromatogramme of PLLA-DEAA-15k (measured in duplicate)

Figure S5.2.2 MALDI spectrum for PLLA-DEAA-15k

Figure S5.3.1 GPC chromatogramme of PLLA-DEAA-25k (measured in duplicate)

Figure S5.3.2 MALDI spectrum for PLLA-DEAA-25k

Figure S5.4.1 GPC chromatogramme of PLLA-DEAA-50k (measured in duplicate)

Figure S5.5.1 GPC chromatogramme of PLLA-DEAA-100k (measured in duplicate)

S6. Kinetics of Polymerisations of lactide (L-LA₂) and caprolactone (CL) by the catalyst system.

Homopolymerisations were performed with DEAA as amide at 105 °C for (L-LA)₂ and 105 °C and 140 °C for CL. Additionally the rates were determined per monomer for a 1:1 copolymerisation mixture. The conversion of monomers was calculated by integration of the ¹H-NMR spectrum. For lactide the methine H α peak was used (q at 5.16 - 5.13 ppm for polymer plus terminal H α (4.35 – 4.31 ppm) against 5.05 - 5.03 ppm for monomer) and for CL the ϵ -CH₂ peak (4.07-4.03 ppm) against the monomer at 4.23-4.20 ppm)

S7. NMR spectrum of copolymer indicating the peaks used for calculation of molar ratios, randomness and average chain lengths

S8. GPC chromatogrammes of homo- and copolymers

Figure S8.1 GPC chromatogramme of PLLA-DEAA-hex (measured in duplicate)

Figure S8.2 GPC chromatogramme of PCL-DEAA-hex (measured in duplicate)

Figure S8.3 GPC chromatogramme of PLLA-grad-PCL-105 (measured in duplicate)

Figure S8.4 GPC chromatogramme of PLLA-grad-PCL-140 (measured in duplicate)

Figure S8.5 GPC chromatogramme of PLLA-*b*-PCL-105 (measured in duplicate)

Figure S8.7 GPC chromatogramme of PCL-b-PLLA-140-105 (measured in duplicate)

S9. Selected MALDI spectra of copolymers

Figure S9.1 MALDI spectrum of PLLA-grad-PCL

Figure S9.2 MALDI spectrum and excerpt of PCL-b-PLLA-140-105

S10. Glycolide copolymerisation

 Table S10.1
 PLGA copolymerisation data

S11. DSC investigations

Polymer	Tm₁ [°C]	ΔH_{m1} [Jg ⁻¹]	Tm₂ [°C]	ΔH_{m2} [Jg ⁻¹]	ΔH _c [Jg⁻¹]	X _{PLLA}	X _{PCL}
PLLA	163- 168	59	-	-	-	63%	-
PLLA- <i>b</i> -PCL	33	3	-	-	2	-	2%
PCL <i>-b-</i> PLLA-140- 105	51	45	142	10	-	20%	37%
PLLA-grad- PCL-105	37	10	113	2	9	4%	2%

 Table S11.1
 Thermal data of representative polymers.

Data are taken from the second heating and temperatures are peak values.

Crystallinity X was calculated using

$$X = \frac{\Delta Hm - \Delta Hc}{\omega \,\Delta Hm^0} \,x \,100$$

where ΔH_m and ΔH_c are the melting and cold crystallisation enthalpies taken from the DSC, ΔH_m^0 is the melting enthalpy for a 100% crystalline polymer (93.7 Jg⁻¹ for PLLA[1] and 135 Jg⁻¹ for PCL[2]) and ω is the weight fraction of the respective polymer.

References

[1] S. Jia, D. Yu, Y. Zhu, Z. Wang, L. Chen, L. Fu, Morphology, Crystallization and Thermal Behaviors of PLA-Based Composites: Wonderful Effects of Hybrid GO/PEG via Dynamic Impregnating, Polymers (Basel) 9(10) (2017).

[2] T.M. Diez-Rodriguez, E. Blazquez-Blazquez, N.L.C. Antunes, M.R. Ribeiro, E. Perez, M.L. Cerrada, Nanocomposites of PCL and SBA-15 Particles Prepared by Extrusion: Structural Characteristics, Confinement of PCL Chains within SBA-15 Nanometric Channels and Mechanical Behavior, Polymers (Basel) 14(1) (2021).