Supplementary Information

Electroless Ni plated nanostructured TiO₂ as a photocatalyst for solar hydrogen production

Priyanka N. Birla, Sudhir Arbuj, Manish D. Shinde, Shany Joseph, Sunit Rane, Sulabha Kulkarni and Bharat Kale* Centre for Materials for Electronics Technology (C-MET), Panchawati, Off Pashan Road, Pune: 411 008, India.

*Corresponding Author: Dr. Bharat B. Kale Director General Centre for Materials for Electronics Technology (C-MET) Panchawati, Off Pashan Road, Pune: 411 008, India Tel: + 91 020 25899273 Email: bbkale1@gmail.com Keywords: Ni decorated TiO2, Sacrificial agent, Nanoparticles, Photocatalysis, Water Splitting

Nickel plating bath detail study

Cleaning solution

As mentioned under Materials and Methods section, For nickel loading commercial electrochemical bath was purchased from Grauer & Weil (India) Limited. Electrochemical commercial bath consisted of cleaning solution, mild etching solution, pre-activator, activator, Ni salt solution and reducing solution.

Sr. No.	Name of the process solution	Commercial Name	Preparation method	
1.	Cleaning solution	Ginplate CC 50	Ginplate CC-50 = 50% by	
			volume	
			Distilled water = Balance	
2.	Mild Etching Solution	Ginplate AD 481	Ginplate AD-481 SP =100g/l in	
			Distilled water	
			Sulphuric Acid, AR grade=1% by	
			volume	
3.	Pre-activator	Ginplate PC 236	Ginplate PC-236=150 g/L in	
			Distilled water	
			Hydrochloric Acid, AR Grade	
			(37%) = 2.5% by volume	
4.	Activator	Ginplate Activator 444	Deionized or distilled water	
			=66% by volume	
			Ginplate PC 236 = 150 g/l	
			Hydrochloric Acid, AR Grade	
			(37%) =1.5% by volume	
			Ginplate Additive 443 =1% by	
			volume	
			Ginplate Activator 444 = 6.3%	
			by volume	
5.	Post Activator	Ginplate Post-Activator	Ginplate PA 493 = 1 part by	
		493	volume	
			Distilled water = 5 parts by	
			volume	
6.	Ni salt solution	Ginplate 432A	Ginplate Ni 432 A = 80 ml/lit.	
7.	Reducing solution	Ginplate 432B	Ginplate Ni 432 B = 150 ml/lit.	

Table T1: Commercial electrochemical bath preparation process solutions and methods.

The above compositions are patented and the information provided above is as mentioned in their standard data sheet (<u>www.growel.com</u>). For the electroless Ni loading bath preparation above mentioned protocol is followed for the experiments in the present work.

Ref. Electroless nickel, alloy, composite and nano coatings - A critical review Sudagar, J., Lian, J., & Sha, W. (2013). Electroless nickel, alloy, composite and nano coatings - A critical review. Journal of Alloys and Compounds, 571, 183–204.

Ref. Laurence W. McKeen,4 - Binders, Editor(s): Laurence W. McKeen, In Plastics Design Library, Fluorinated Coatings and Finishes Handbook (Second Edition), William Andrew Publishing,2016, Pages 59-82, ISBN 9780323371261.

Ref. Electroless nickel, alloy, composite and nano coatings - A critical review Sudagar, J., Lian, J., & Sha, W. (2013). Electroless nickel, alloy, composite and nano coatings - A critical review. Journal of Alloys and Compounds, 571, 183–204.

Ref. Chapter 18 Electroless Deposition of Nickel, Mordechay Schlesinger, Modern Electroplating, Fifth Edition Edited by Mordechay Schlesinger and Milan Paunovic Copyright-2010 John Wiley & Sons, Inc.

Ref. Chapter No. 8. Electroless Plating Fundamentals and Applications, Glenn O. Mallory, Juan B. Hajdu, 1990, ISBN : 9780936569079, 0936569077

Sr. No.	Solution	Temperature (°C)	Time (min)	Water washing time (min)
1	Cleaning solution	60	10	1-2
2.	Mild etching solution	27	4	1-2
3.	Acid solution	27	2	1-2
4.	Pre-activator	27	2	0
5.	Activator	27	5	1-2
6.	Post activator	27	5	1-2
7.	Electroless Ni bath	85	15	5

Table T2. Steps involved in surface activation and electroless Ni loading process over TiO₂ nanoparticles.

XPS spectra of 0.1% Ni/TiO₂ powder for carbon, C1s

Fig. S1 XPS spectra of 0.1% Ni/TiO₂ powder corresponding to carbon, C1s.

FESEM images of 0.5%Ni/TiO₂ nanopowders

Fig. S2 FESEM images of 0.5%Ni/TiO₂ nanopowders at (a) low and (b) high magnification respectively.

Fig. S3 FETEM images of 0.1%Ni/TiO₂ nanopowders. Yellow highlighted regions show nanoclusters (dotted circles) and nanofilms (irregular shapes) deposited over TiO₂ surfaces.

FETEM images of 0.5 %Ni/TiO₂ nanopowder

Fig. S4 FETEM images of 0.5 %Ni/TiO₂ nanopowder photocatalyst.

Fig. S5 FETEM-STEM-EDS elemental mapping images of 0.5% Ni/TiO₂ nanopowders: (a) EDS spectra (Inset: electron image of selected region and its quantitative EDS data) and its elemental mapping images for (b) their elemental mix (c) Ti, (d) O and (e) Ni.

FETEM images of 0.1%Ni/TiO₂ nanopowder photocatalyst after recycling

Fig. S6 FETEM images of recycled 0.1%Ni/TiO₂ nanopowder photocatalyst.

Section S1: Apparent Quantum Efficiency (AQE)

The apparent quantum efficiency for a particular wavelength is calculated using equation (I)(57),(77)

$$Apparent Quantum Efficiency = \frac{(number of photo Hydrogen molecule) x 2}{number of incident photons}$$
(I)

The value of number of incident photons was obtained using the parameters of wavelength and intensity of incident light as well as irradiation area as given below:

$$Number of incident photons per second = \frac{Light intensity x irradiation area x lightwavelength}{Planck's constant x light speed}$$
(II)