(Electronic Supplementary Information)

Fast-response photothermal bilayer actuator based on poly(N-isopropylacrylamide)-graphene oxide-hydroxyethyl methacrylate/polydimethylsiloxane

Shun Li, ^a Zhuo Cai, ^a Jiemin Han, ^a Yifei Ma, ^{*a} Zhaomin Tong, ^a Mei Wang, ^{*a} Liantuan Xiao, ^a Suotang Jia ^a and Xuyuan Chen ^{ab}

a. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China. Email: wangmei@sxu.edu.cn

b. Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Microsystems, University of Southeast Norway, Borre N-3184, Norway

Fig. S1 X-ray diffraction (XRD) spectra of GO and GO heated at 80°C for 2 h (GO-80).

Fig. S2 Digital photos of the Pure PNIPAM, PH, PGH-1 and PGH-2 hydrogels in the cuvette (from left to right). (a) Pure PNIPAM, (b) PH, (c) PGH-1, and (d) PGH-2.

Fig. S3 Photos of PGH-2 in room temperature and hot solution. (a) in room temperature water (25° C). (b) in hot solution (40° C).

Fig. S4 Comparison of thermo-responsive actuation behavior of the bilayer actuators with different GO concentration and different thickness of PNIPAM-based composite hydrogel films.