Supplementary Materials for

Lasiodipline G and other diketopiperazine metabolites produced by

Lasiodiplodia chiangraiensis

Sarunpron Khruengsai^{a,b}, Patcharee Pripdeevecha^{a,b,c}, Chutima Tanapichatsakul^b, Winnie

Chemutai Sum^a, Mahmoud A. A. Ibrahim^{d,e}, Marc Stadler^a and Sherif S. Ebada^{a,f*}

^aDepartment of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; ^bSchool of Science, Mae Fah Luang University, Chiang Rai, Thailand; ^cCenter of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Chiang Rai, Thailand; ^dComputational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; ^eSchool of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa; ^fDepartment of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, 11566 Cairo, Egypt.

* Correspondence: sherif_elsayed@helmholtz-hzi.de; sherif_elsayed@helmholtz-hzi.de; sherif_elsayed@helmholtz-hzi.de

ABSTRACT

Lasiodiplodia fungi are known to colonize plants as both pathogens and/or endophytes; hence, they can be exploited for their beneficial roles. Many compound classes from the genus have exhibited their potential biotechnological applications. Herein, we report two new metabolites **1** and **2** together with three known cylco-(D-Ala-D-Trp) (**3**), indole-3-carboxylic acid (**4**) and a cyclic pentapeptide clavatustide B (**5**), isolated from the submerged cultures of a recently described species *L. chiangraiensis*. Chemical structures of the isolated compounds were determined by extensive NMR spectroscopic analyses together with HRESIMS. The absolute configurations of the new compounds were established based on comparing experimental and calculated time-dependent density functional theory circular dichroism (TDDFT-ECD) spectra. Compound **1** exhibited significant cytotoxic activities against an array of cell lines with IC₅₀ values of 2.9-12.6 μ M, as well as moderate antibacterial effects.

Keywords: Lasiodiplodia, new species, diketopiperazine, cytotoxic, antimicrobial.

Contents of Supporting Information

#	Contents	Page
1	Table S1. 2D (COSY, HMBC and ROESY) NMR correlations of 1.	S4
2	Table S2. 2D (COSY, HMBC and ROESY) NMR correlations of 2 .	S4
3	Table S3. Cytotoxicity (IC ₅₀) and antimicrobial activity (MIC) of $1-4$.	S 5
4	Figure S1. HPLC chromatogram of <i>Lasiodiplodia chiangraiensis</i> cultured	S 5
-	on cotton seed ($Q6^{1/2}$) medium.	
5	Figure S2. HPLC chromatogram, UV and LRESIMS spectra of 1.	S6
6	Figure S3. HPLC chromatogram, UV and HRESIMS spectra of 1.	S 7
7	Figure S4. ¹ H NMR spectrum of 1 in methanol- d_4 at 700 MHz.	S8
8	Figure S5. ¹³ C NMR spectrum of 1 in methanol- d_4 at 1/5 MHz.	S9
9	Figure S6. 'H-'H COSY spectrum of 1 in methanol- d_4 at 700 MHz.	S10
10	Figure S7. HMBC spectrum of 1 in methanol- d_4 at 700 MHz.	SII
11	Figure S8. HSQC spectrum of 1 in methanol- d_4 at 700 MHz.	S12
12	Figure S9. ROESY spectrum of 1 in methanol- d_4 at 700 MHz.	813
13	Figure S10. ¹ H NMR spectrum of 1 in DMSO- d_6 at 700 MHz.	S14
14	Figure S11. HPLC chromatogram, UV and LRESIMS spectra of 2 .	S15
15	Figure S12. HPLC chromatogram, UV and HRESIMS spectra of 2.	S15
16	Figure S13. ¹ H NMR spectrum of 2 in methanol- d_4 at 700 MHz.	S16
17	Figure S14. ¹ H- ¹ H COSY spectrum of 2 in methanol- d_4 at 700 MHz.	S17
18	Figure S15. HMBC spectrum of 2 in methanol- d_4 at 700 MHz.	S18
19	Figure S16. HSQC spectrum of 2 in methanol- d_4 at 700 MHz.	S19
20	Figure S17. ¹ H NMR spectrum of 2 in DMSO- d_6 at 700 MHz.	S20
21	Figure S18. ¹³ C NMR spectrum of 2 in DMSO- d_6 at 175 MHz.	S21
22	Figure S19. ¹ H- ¹ H COSY spectrum of 2 in DMSO- d_6 at 700 MHz.	S22
23	Figure S20. ROESY spectrum of 2 in DMSO- d_6 at 700 MHz.	S23
24	Figure S21. HPLC chromatogram, UV and LRESIMS spectra of 3 .	S24
25 26	Figure S22. HPLC chromatogram, UV and HRESIMS spectra of 3 .	S25
26 27	Figure S23. ¹ H NMR spectrum of 3 in methanol- d_4 at 700 MHz.	S26
27	Figure S24. ¹ H- ¹ H COSY spectrum of 3 in methanol- d_4 at 700 MHz.	527 529
2ð 20	Figure S25. KOES Y spectrum of 3 in methanol- d_4 at /00 MHz.	52ð 520
29 20	Figure S20. ¹ H NNIK spectrum of 3 in DMSO- d_6 at /00 MHz.	529 520
JU 21	Figure S27. "C NIVIR spectrum of 5 in DIVISO- a_6 at 1/5 MHZ. Eigure S28. HDLC observate group LIV and LDECD48 are store of 4.	53U 521
31 22	Figure S20. HPLC chromatogram, UV and LRESING spectra of 4.	531
34 32	Figure 529. HPLC chromatogram, UV and HKESINIS spectra of 4.	534 522
33 34	Figure S50. ¹ H INVIK spectrum of 4 in methanol- a_4 at 500 MHz.	555
34 35	Figure S51. HWBC spectrum of 4 in methanol- a_4 at 500 MHZ.	534 525
33 26	Figure 552. HPLC chromatogram, UV and LRESIMS spectra of 5.	535
36 2-	Figure S33. HPLC chromatogram, UV and HRESIMS spectra of 5.	530
37	Figure S34. ¹ H NMR spectrum of 5 in methanol- d_4 at 700 MHz.	S 37
38	Figure S35. ¹ H- ¹ H COSY spectrum of 5 in methanol- d_4 at 700 MHz.	S38
39	Figure S36. HMBC spectrum of 5 in methanol- d_4 at 700 MHz.	S39
40	Figure S37. HSQC spectrum of 5 in methanol- d_4 at 700 MHz.	S40

Pos.	¹ H- ¹ H COSY ^a	HMBC ^a	ROESY ^a
1			
2			
4			
5			
6-N <i>H</i>			
7	H-9w ^a	4, 5, 8, 9, 16	H-9, H-15
8			
9	H-7w ^a	7, 8, 11, 12w ^a , 15w ^a , 16	H-7
10-NH			
11			
12	H-13, H-14w ^a	14, 16	
13	H-12, H-14	11, 12w ^a , 15	
14	H-13, H-15	11w ^a , 12, 16	
15	H-14, H-13w ^a	8, 11, 13, 16w ^a	H-7
16			
2-Me		1, 2	3-NMe
3-NMe		2,4	2-Me

Table S1. 2D (COSY, HMBC and ROESY) NMR correlations of **1** in methanol- d_4 at 700 MHz.

^a "w" denotes weak correlation.

Table S2. 2D (COSY, HMBC and ROESY) NMR correlations of **2** in methanol- d_4 at 700 MHz.

Pos.	¹ H- ¹ H COSY	НМВС	ROESY	
1				
2	2-C <u>H</u> ₃	C-1, 2- <u>C</u> H ₃ , C-4	H-5	
3-NOH				
4				
5		C-1, C-4, C-7, C-8,	H-2	
6-N <i>H</i>				
7		C-1w ^a , C-4, C-5, C-8, C-9, C-16	H-15	
8				
9	$C\underline{H}_2$ -7 w^a	C-5w ^a , C-7, C-8, C-11, C-16		
10-NH				
11				
12	H-13, H-14w ^a	C-14, C-16		
13	H-12, H-14, H-15w ^a	C-11, C-12w ^a , C-14w ^a , C-15		
14	H-12w ^a , H-13, H-15	C-12, C-13w ^a , C-15w ^a , C-16		
15	H-13w ^a , H-14, H-15	C-8, C-11, C-13, C-16w ^a	C <u>H</u> ₂ -7	
16				
2-Me	H-2	C-1, C-2		

^a "w" denotes weak correlation.

	IC50 (µM)			Positive Control	
Test Cell Line	1	2	3	4	Epothilone B (µM)
Mouse fibroblast (L929)	5.8	n.a.	n.a.	87	0.65
Human endocervival adenocarcinoma (KB3.1)	8.4	n.a.	n.a.	n.a.	0.17
Human prostate carcinoma (PC-3)	6.3	n.d.	n.d.	n.d.	0.09
Human breast adenocarcinoma (MCF-7)	3.9	n.d.	n.d.	n.d.	0.07
Human ovarian cancer (SKOV-3)	3.9	n.d.	n.d.	n.d.	0.09
Human epidermoid carcinoma (A431)	2.9	n.d.	n.a.	n.a.	0.06
Human lung carcinoma (A549)	12.6	n.d.	n.d.	n.d.	0.05
Test Microorganism		MIC	(µg/mL)	Positive Control (µg/mL)	
Staphylococcus aureus	33.3	n.i.	n.i.	n.i.	0.21 ^G
Escherichia coli	n.d.	n.i.	n.i.	n.i.	0.83 ^G
Bacillus subtilis	n.i.	n.i.	n.i.	n.i.	16.6 ⁰
Pseudomonas aeruginosa	n.d.	n.i.	n.i.	n.i.	0.22 ^G
Pichia anomala	n.d.	n.i.	66.6	n.i.	4.20 ^N
Candida albicans	n.d.	n.i.	n.i.	n.i.	2.20 ^N
Acinetobacter baumanii	n.d.	n.i.	n.i.	n.i.	0.52 ^C
Chromobacterium violaceum	n.d.	n.i.	n.i.	n.i.	1.70 ^G
Schizosaccharomyces pombe	n.d.	n.i.	n.i.	n.i.	2.10 ^N
Mucor hiemails	n.d.	n.i.	n.i.	n.i.	2.10 ^N
Rhodotorula glutinis	n.d.	n.i.	n.i.	n.i.	2.30 ^N
Mycobacterium smegmatis	n.d.	n.i.	n.i.	n.i.	1.70 ^K

Table S3. Cytotoxicity (IC_{50}) and antimicrobial activity (MIC) of 1-4.

n.a.: No activity. n.i.: No inhibition up to 67 µg/mL. n.d.: Not determined.

G: Gentamycin; O: Oxytetracycline; N: Nystatin; C: Ciprofloxacin; K: Kanymycin.

Figure S1. HPLC chromatogram of Lasiodiplodia chiangraiensis cultured on cotton seed (Q6) medium.

......

Figure S4. ¹H NMR spectrum of **1** in methanol- d_4 at 700 MHz.

Figure S5. ¹³C NMR spectrum of **1** in methanol- d_4 at 175 MHz.

Figure S6. ¹H-¹H COSY spectrum of **1** in methanol- d_4 at 700 MHz.

Figure S7. HMBC spectrum of $\mathbf{1}$ in methanol- d_4 at 700 MHz.

Figure S14. ¹H-¹H COSY spectrum of 2 in methanol- d_4 at 700 MHz.

Figure S15. HMBC spectrum of 2 in methanol- d_4 at 700 MHz.

Figure S16. HSQC spectrum of 2 in methanol- d_4 at 700 MHz.

Figure S17. ¹H NMR spectrum of **2** in DMSO- d_6 at 700 MHz.

Figure S18. ¹³C NMR spectrum of **2** in DMSO- d_6 at 175 MHz.

Figure S19. ¹H-¹H COSY spectrum of **2** in DMSO- d_6 at 700 MHz.

Figure S20. ROESY spectrum of 2 in DMSO- d_6 at 700 MHz.

Figure S21. LRESIMS of 3.

Figure S23. ¹H NMR spectrum of **3** in methanol- d_4 at 700 MHz.

Figure S24. ¹H-¹H COSY spectrum of **3** in methanol- d_4 at 700 MHz.

Figure S25. ROESY spectrum of **3** in methanol- d_4 at 700 MHz.

Figure S26. ¹H NMR spectrum of **3** in DMSO- d_6 at 700 MHz.

Figure S27. ¹³C NMR spectrum of **3** in DMSO- d_6 at 175 MHz.

Generic Display Report

Figure S28. LRESIMS of 4.

Figure S29. HRESIMS of 4.

Figure S30. ¹H NMR spectrum of **4** in methanol- d_4 at 500 MHz.

Figure S31. HMBC spectrum of **4** in methanol- d_4 at 500 MHz.

Generic Display Report

Figure S32. LRESIMS of 5.

Figure S33. HRESIMS of 5.

Figure S34. ¹H NMR spectrum of **5** in methanol- d_4 at 700 MHz.

Figure S35. ¹H-¹H COSY spectrum of **5** in methanol- d_4 at 700 MHz.

Figure S36. HMBC spectrum of **5** in methanol- d_4 at 700 MHz.

Figure S37. HSQC spectrum of $\mathbf{5}$ in methanol- d_4 at 700 MHz.