Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Improved supercapacitor performances by adding carbonized C_{60} based nanospheres to PVA/TEMPO-cellulose hydrogel-based electrolyte

Han Jia,^a Sabina Shahi,^b Lok Kumar Shrestha,^{c,d,*} Katsuhiko Ariga,^{c,e} and Tsuyoshi Michinobu^{a,*}

^a Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan. E-mail: michinobu.t.aa@m.titech.ac.jp
^b Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44613, Nepal
^c Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan. E-mail: SHRESTHA.Lokkumar@nims.go.jp
^d Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1 Tennodai, Tsukuba 305-8573, Japan
^e Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University

of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan

Fig. S1. SEM images of C_{60} -based nanospheres fabricated with different C_{60} concentrations.

Fig. S2. Photos of TCCS aqueous suspension after (a) 0 h and (b) 24 h of storage.

Fig. S3. SEM images of the porous structure of freeze-dried TC films. The image (b) is a magnified one of the image (a).

Fig. S4. The I-V curve of a freeze-dried TCCS film at a voltage of -1 V to 1 V. The red line is the fitted curve. The sample size was $0.8 \text{ cm} \times 0.1 \text{ cm} \times 0.03 \text{ cm}$ (length × width × thickness).

Fig. S5. TGA and DTG curves of freeze-dried TC and TCCS films from 20 to 1000 °C.

Table S1. Decomposition temperature (T_d) and residual amount after TGA measurements of the freeze-dried TC and TCCS films

Sample	T_{d} (90%) (°C)	Residual amount (%)
TC	237	22
TCCS	247	57

Fig. S6. SEM images of TCCS films after TGA measurements. The image (b) is a magnified one of

the image (a).

Fig. S7. Strain-stress curves of (a) PVA-TC and (b) PVA-TCCS hydrogels.

The hydrogels were sandwiched and sealed between two stainless steel discs for the measurement. The ionic conductivities (σ) of organogels were calculated according to the following equation:

$$\sigma = \frac{L}{RA} \tag{S1}$$

where L represents the thickness of the hydrogel, R represents the impendence value obtained by the intercepts of EIS curves with the x-axis, and A represents the contact area of the organogel between two stainless steel electrodes.

Fig. S8. The EIS plots of PVA-TC hydrogel and PVA-TCCS hydrogel after the solvent exchange with $1 \text{ M H}_2\text{SO}_4$ aqueous solution measured at a frequency range from 5×10^5 to 10^{-1} Hz and 10 mV voltage.

))	J J 8	2
Sample	Area	Thickness	Ionic conductivity
	(cm^2)	(cm)	$(S \text{ cm}^{-1})$
PVA-TC	1	0.10	0.17
PVA-TCCS	1	0.07	0.09

Table S2. Area, thickness, and ionic conductivity of the hydrogels measured by EIS.

Fig. S9. (a) The Nyquist plots for the electrode. (b) CV curves vs. scan rate for the electrode. (c) GCD profiles vs. current density for the electrode. (d) Specific capacitance as a function of the current density of the electrode.

Fig. S10. (a) CV profiles of the PVA-TC system at different scan rates and (b) the corresponding CD profiles at different currents.