Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023 Supporting Information for: ## Stabilization of propene complexes by intramolecular coordination of thioether function Lukáš Hanzl,^a Jaromír Vinklárek, ^a Libor Dostál,^a Ivana Císařová,^b Miroslava Litecká ^c and Jan Honzíček ^{*d} ^aDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic. ^bDepartment of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43 Prague 2, Czech Republic. ^cDepartment of Materials Chemistry, Institute of Inorganic Chemistry of the CAS, Husinec-Řež 1001, 25068 Řež, Czech Republic. ^dInstitute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic. Figure S1: ¹H NMR spectrum of C₅H₄(CH₂)₂SEt in CDCl₃ (400 MHz) **Figure S2:** 1 H NMR spectrum of $C_{5}H_{4}(CH_{2})_{2}SEt$ in CDCl₃ (400 MHz), close-up of the aromatic section **Figure S3:** 1 H NMR spectrum of $C_{5}H_{4}(CH_{2})_{2}SEt$ in CDCl₃ (400 MHz), close-up of the aliphatic section Figure S4: 1 H NMR spectrum of $C_{5}H_{4}(CH_{2})_{2}SPh$ in CDCl $_{3}$ (400 MHz) **Figure S5:** 1 H NMR spectrum of $C_{5}H_{4}(CH_{2})_{2}SPh$ in CDCl₃ (400 MHz), close-up of the aromatic section **Figure S6:** 1 H NMR spectrum of $C_{5}H_{4}(CH_{2})_{2}SPh$ in CDCl $_{3}$ (400 MHz), close-up of the aliphatic section Figure S7: ¹H NMR spectrum of **1** in CD₂Cl₂ (500 MHz) Figure S8: ¹H NMR spectrum of 2 in CD₂Cl₂ (500 MHz) Figure S9: ¹H NMR spectrum of **3** in C₆D₆ (400 MHz) Figure S10: ¹H NMR spectrum of 4 in CDCl₃ (400 MHz) **Figure S11:** 1 H NMR spectrum of **5** in CD₂Cl₂ (500 MHz) measured directly after the preparation of the sample. **Figure S12:** ¹H NMR spectrum of **5** in CD₂Cl₂ (500 MHz) measured after preparation with the internal standard. **Figure S13:** 1 H NMR spectrum of **5** in CD $_{2}$ Cl $_{2}$ (500 MHz) measured after sitting at room temperature for two hours with the internal standard measured. **Figure S14:** 1 H NMR spectrum of **6** in CD $_{2}$ Cl $_{2}$ (500 MHz) measured directly after the preparation of the sample with the internal standard. **Figure S15:** ¹H NMR spectrum of **6** in CD₂Cl₂ (500 MHz) measured after sitting at room temperature for two hours with the internal standard. Figure S16: ¹H NMR spectrum of **7** in CD₂Cl₂ (500 MHz). Figure S17: $^{13}C\{^{1}H\}$ NMR spectrum of 7 in CD₂Cl₂ (126 MHz). Figure S18: ¹H NMR spectrum of 8 in CD₂Cl₂ (500 MHz). Figure S19: $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of 8 in CD₂Cl₂ (126 MHz). Figure S20: ¹H NMR spectrum of 9 in CD₂Cl₂ (500 MHz). Figure S21: $^{13}C\{^{1}H\}$ NMR spectrum of 9 in CD₂Cl₂ (126 MHz). Figure S22: ¹H NMR spectrum of 10 in CD₂Cl₂ (500 MHz). Figure 23: ¹³C APT NMR spectrum of 10 in CD₂Cl₂ (126 MHz). Figure S24: ¹H NMR spectrum of 11 in CD₂Cl₂ (500 MHz). Figure S25: $^{13}C\{^{1}H\}$ NMR spectrum of 11 in CD₂Cl₂ (126 MHz). Figure S26: ¹H NMR spectrum of 12 in CD₂Cl₂ (400 MHz). Figure S27: $^{13}C\{^{1}H\}$ NMR spectrum of 12 in CD₂Cl₂ (126 MHz). Figure S28: ¹H NMR spectrum of 13 in CD₂Cl₂ (500 MHz). Figure S29: $^{13}C\{^{1}H\}$ NMR spectrum of 13 in CD₂Cl₂ (126 MHz). Figure S30: ¹H NMR spectrum of 14 in CD₂Cl₂ (500 MHz). Figure S31: $^{13}C\{^{1}H\}$ NMR spectrum of 14 in CD₂Cl₂ (126 MHz). Figure S32: ¹H NMR spectrum of 15 in CD₂Cl₂ (500 MHz). Figure S33: 13 C APT NMR spectrum of 15 in CD₂Cl₂ (126 MHz). Figure S34: ¹H NMR spectrum of 16 in CD₂Cl₂ (500 MHz). Figure S35: ¹³C APT NMR spectrum of 16 in CD₂Cl₂ (126 MHz). Figure S36: ¹H NMR spectrum of 17 in CD₂Cl₂ (500 MHz). Figure S37: $^{13}C\{^{1}H\}$ NMR spectrum of 17 in CD₂Cl₂ (126 MHz). Figure S38: ¹H NMR spectrum of 18 in CD₂Cl₂ (500 MHz). Figure S39: $^{13}C\{^{1}H\}$ NMR spectrum of 18 in CD₂Cl₂ (126 MHz). Figure S40: ^1H NMR spectrum of 19 in CD $_2\text{Cl}_2$ (400 MHz).