# Water compatible silica supported Iron trifluoroacetate and trichloroacetate: As the prominent and recyclable Lewis acid catalysts for solvent-free green synthesis of hexahydroquinoline-3-carboxamides 

Dnyaneshwar Purushottam Gholap ${ }^{1}$, Ramdas Huse ${ }^{1}$, Sudarshan Dipake ${ }^{1}$ and Dr. M. K. Lande ${ }^{1 *}$,<br>${ }^{1}$ Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India.<br>*Corresponding Author: Email Id: mkl_chem@yahoo.com

## Supporting Information

## Content

1. Validation of Green metrics for synthesized organic derivatives 5a-l.
2. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, FTIR, Mass spectra of the organic derivatives.

## 1. Validation of Green metrics for synthesized organic derivatives (5a-l)

## Calculation of green metrics

Table 1: Materials used for green metrics calculation

| Reactant 1 | Reactant 2 | Reactant 3 | Reactant 4 |
| :---: | :---: | :---: | :---: |
| Benzaldehyde $0.50 \mathrm{gm}(\mathrm{Mol} . \mathrm{Wt} .=106.12)$ | Acetoacetanilide$\begin{aligned} & 0.83 \mathrm{gm}(\mathrm{Mol} \\ & \mathrm{Wt} . \\ & =177.20) \end{aligned}$ | 5, 5-dimethyl-1, 3cyclohexanedione 0.66 gm (Mol. Wt. $=140.18)$ | Ammonium acetate$\begin{gathered} 0.43 \mathrm{gm} \text { (Mol. Wt. } \\ =77.08) \end{gathered}$ |
| 4-methoxybenzaldehyde $0.64 \mathrm{gm}(\mathrm{Mol} . \mathrm{Wt} .=136.15)$ |  |  |  |
| 4-methybenzaldehyde <br> $0.56 \mathrm{gm}(\mathrm{Mol} . \mathrm{Wt} .=120.15)$ |  |  |  |
| 4-bromobenzaldehyde $0.87 \mathrm{gm}(\mathrm{Mol} . \mathrm{Wt} .=185.03)$ |  |  |  |
| 4-fluoroobenzaldehyde $0.58 \mathrm{gm}(\mathrm{Mol} . \mathrm{Wt} .=124.11)$ |  |  |  |
| 4-chlorobenzaldehyde $0.66 \mathrm{gm}(\mathrm{Mol} . \mathrm{Wt} .=140.57)$ |  |  |  |
| 4-nitrobenzaldehyde $0.71 \mathrm{gm}(\mathrm{Mol} . \mathrm{Wt} .=151.12)$ |  |  |  |
| 4-hydroxybenzaldehyde $0.57 \mathrm{gm}(\mathrm{Mol} . \mathrm{Wt} .=122.12)$ |  |  |  |
| 2-chlorobenzaldehyde $0.66 \mathrm{gm}(\mathrm{Mol} . \mathrm{Wt} .=140.57)$ |  |  |  |
| 2-bromobenzaldehyde $0.87 \mathrm{gm}(\mathrm{Mol} . \mathrm{Wt} .=185.03)$ |  |  |  |
| 3-bromobenzaldehyde $0.87 \mathrm{gm}(\mathrm{Mol} . \mathrm{Wt} .=185.03)$ |  |  |  |
| 3-nitrobenzaldehyde $0.71 \mathrm{gm}(\mathrm{Mol} . \mathrm{Wt} .=151.12)$ |  |  |  |

## Analysis of green metrics

The following listed formulae were used for calculating the E-factor, Atom economy (AE), Reaction mass efficiency (RME), Effective mass yield (EMY), and Optimum efficiency (OE). The Calculated data for compounds 5a-1 are presented in Table 2. Calculation of green chemistry metrics for one representative entry, viz. 5a

- $\quad$ E-factor $=$ Total mass waste (g) / Mass of product
$=$ Total input $(\mathrm{g})-$ Total output $(\mathrm{g}) /$ Total output $(\mathrm{g})$
e.g. For the product $5 \mathrm{a} ; \mathrm{E}$-factor $=(0.5 \mathrm{gm}+0.83 \mathrm{gm}+0.66 \mathrm{gm}+0.43 \mathrm{gm})-1.79 / 1.79$

$$
=0.35
$$

- Atom Economy (\%) $=($ Mol. wt. of product $) /($ Total mol. wt. of reactants $) \times 100$

$$
\text { e.g. For the product 5a; } \begin{aligned}
\mathrm{AE} & =(386.49) /(106.12+177.20+140.18+77.08) \times 100 \\
& =(386.49) /(500.58) \times 100 \\
& =77 \%
\end{aligned}
$$

- Reaction mass efficiency (\%) = (Mass of crude product) / (Total mass of reactant) x 100 e.g. For the product $5 \mathrm{a} ; \mathrm{RME}=(1.79) /(0.5 \mathrm{gm}+0.83 \mathrm{gm}+0.66 \mathrm{gm}+0.43 \mathrm{gm}) \times 100$

$$
\begin{aligned}
& =(1.79) /(2.42 \mathrm{gm}) \times 100 \\
& =74 \%
\end{aligned}
$$

- Effective mass yield (\%) = (Mass of Product) / (Mass of non-benign reagents) x 100 e.g. For the product 5 a ; $\mathrm{EMY}=(1.79) /(2.42 \mathrm{gm}) \times 100$

$$
=74 \%
$$

- Optimum efficiency (\%) = Reaction mass efficiency / Atom economy x 100
e.g. For the product $5 \mathrm{a} ; \mathrm{OE}=(74) /(77) \times 100$

$$
=96 \%
$$

Table 2: Green metrics calculation data

| Entry | Product | E-factor | Atom <br> Economy <br> (AE) | Reaction <br> Mass <br> Efficiency <br> (RME) | \% <br> Effective <br> Mass Yield <br> (EMY) | Optimum <br> Efficiency <br> (OE) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | 5 a | 0.35 | $77 \%$ | $74 \%$ | $74 \%$ | $96 \%$ |
| 2. | 5 b | 0.33 | $78 \%$ | $75 \%$ | $75 \%$ | $96 \%$ |
| 3. | 5 c | 0.38 | $78 \%$ | $72 \%$ | $72 \%$ | $92 \%$ |
| 4. | 5 d | 0.35 | $80 \%$ | $74 \%$ | $74 \%$ | $93 \%$ |
| 5. | 5 e | 0.40 | $78 \%$ | $71 \%$ | $71 \%$ | $91 \%$ |
| 6. | 5 f | 0.37 | $78 \%$ | $73 \%$ | $73 \%$ | $93 \%$ |
| 7. | 5 g | 0.40 | $79 \%$ | $71 \%$ | $71 \%$ | $90 \%$ |
| 8. | 5 h | 0.38 | $78 \%$ | $72 \%$ | $72 \%$ | $92 \%$ |
| 9. | 5 i | 0.39 | $78 \%$ | $72 \%$ | $72 \%$ | $92 \%$ |
| 10. | 5 j | 0.36 | $80 \%$ | $73 \%$ | $73 \%$ | $91 \%$ |
| 11. | 5 k | 0.38 | $80 \%$ | $72 \%$ | $72 \%$ | $90 \%$ |
| 12. | 51 | 0.42 | $79 \%$ | $70 \%$ | $70 \%$ | $89 \%$ |

Note: Since the silica supported Iron trifluoroacetate Lewis acid catalyst was recovered from the reaction protocol, their amount is not included in the calculations of green metrics.

## 2. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, FTIR, Mass spectra of the organic derivatives (5a-I)



Spectrum 1 : ${ }^{1} \mathrm{H}$ NMR Spectrum of 4-(phenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5a)


Spectrum 2: ${ }^{13} \mathrm{C}$ NMR Spectrum of 4-(phenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-
1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5a)


Spectrum 3 : Mass Spectrum of 4-(phenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-
1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5a)


Spectrum 4 : FTIR Spectrum of 4-(phenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-
1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5a)


Spectrum 5: ${ }^{1} \mathrm{H}$ NMR Spectrum of 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5b)


Spectrum 6: ${ }^{13} \mathrm{C}$ NMR Spectrum of 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5b)


Spectrum 7 : Mass Spectrum of 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5b)


Spectrum 8 : FTIR Spectrum of 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5b)


Spectrum 9: ${ }^{1} \mathrm{H}$ Spectrum of 4-(4-methylphenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5c)


Spectrum $10:{ }^{13} \mathrm{C}$ Spectrum of 4-(4-methylphenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-
1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5c)


Spectrum 11 : Mass Spectrum of 4-(4-methylphenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5c)


Spectrum 12 : FTIR Spectrum of 4-(4-methylphenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5c)


Spectrum $13:{ }^{1} \mathrm{H}$ Spectrum of 4-(4-bromophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5d)


Spectrum 14 : ${ }^{13} \mathrm{C}$ Spectrum of 4-(4-bromophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5d)


Spectrum 15 : Mass Spectrum of 4-(4-bromophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5d)


Spectrum 16 : FTIR Spectrum of 4-(4-bromophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5d)


Spectrum 17 : ${ }^{1} \mathrm{H}$ Spectrum of 4-(4-fluorophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5e)


Spectrum 18 : ${ }^{13} \mathrm{C}$ Spectrum of 4-(4-fluorophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5e)


Spectrum 19 : Mass Spectrum of 4-(4-fluorophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5e)


Spectrum 20 : FTIR Spectrum of 4-(4-fluorophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5e)


Spectrum 21 : ${ }^{1} \mathrm{H}$ Spectrum of 4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5f)


Spectrum 22: ${ }^{13} \mathrm{C}$ Spectrum of 4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5f)


Spectrum 23 : FTIR Spectrum of 4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5f)


Spectrum 24 : ${ }^{1} \mathrm{H}$ Spectrum of 4-(4-nitrophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5g)


Spectrum 25: ${ }^{13} \mathrm{C}$ Spectrum of 4-(4-nitrophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5g)


Spectrum 26 : FTIR Spectrum of 4-(4-nitrophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5g)


Spectrum 27: ${ }^{1} \mathrm{H}$ Spectrum of 4-(4-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5h)


Spectrum 28 : ${ }^{13} \mathrm{C}$ Spectrum of 4-(4-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5h)


Spectrum 29 : FTIR Spectrum of 4-(4-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5h)


Spectrum 30 : ${ }^{1} \mathrm{H}$ Spectrum of 4-(2-chlorophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-
1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5i)


Spectrum 31 : ${ }^{13} \mathrm{C}$ Spectrum of 4-(2-chlorophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5i)


Spectrum 32 : FTIR Spectrum of 4-(2-chlorophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5i)


Spectrum 33 : ${ }^{1} \mathrm{H}$ Spectrum of 4-(2-bromophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5j)


Spectrum 34 : ${ }^{13} \mathrm{C}$ Spectrum of 4-(2-bromophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5j)


Spectrum 35 : FTIR Spectrum of 4-(2-bromophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline -3-carboxamide (5j)

# Spectral data of represented hexahydroquinoline-3-carboxamide derivatives 

## 4-(phenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline-3carboxamide (5a)

White solid; M.P. : $245-247^{\circ} \mathrm{C}$
IR ( $v_{\max } \mathrm{cm}^{-1}$ ): 3319 ( $\mathrm{N}-\mathrm{H}$ stretch), 2960 (aliphatic C-H stretch), 1608 (C=O), 1546 (C=O), 1441 ( $\mathrm{C}=\mathrm{C}$ stretch), $753 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ out of plane bending).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz},-\mathrm{DMSO}, \delta \mathrm{ppm}$ ) : 9.48 (s, 1H), 8.65 (s, 1H), $7.50(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.19(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.03(\mathrm{dd}, \mathrm{J}=8.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, \mathrm{J}=7.4$ Hz, 1H), 4.93 (s, 1H), $2.48-2.46(\mathrm{~m}, 3 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.87$ (s, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO, $\delta \mathrm{ppm}$ ) : 194.05 (s), 167.74 (s), 150.91 (s), 147.54 (s), 139.82 (s), 135.36 (s), 128.84 (s), 128.26 (s), 127.83 (s), 126.07 (s), 123.31 (s), 120.06 (s), 111.36 (s), 108.42 (s), 50.86 (s), 32.48 (s), 29.50 (s), 27.21 (s), 17.52 (s).

Mass of $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{M}^{+}: 387.36$.

## 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline-3carboxamide (5b)

White solid; M.P. : $246-248{ }^{\circ} \mathrm{C}$
IR ( $v_{\max } \mathrm{cm}^{-1}$ ): 3352 (N-H stretch), 2960 (aliphatic C-H stretch), 1659 (C=O), 1599 (C=O), 1443 ( $\mathrm{C}=\mathrm{C}$ stretch), $754 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ out of plane bending).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz},-\operatorname{DMSO}, \delta \mathrm{ppm}$ ) : 9.48 ( $\mathrm{s}, 1 \mathrm{H}$ ), 8.64 (s, 1H), 7.54 (s, 2H), 7.23 (s, 2H), $7.09(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 3.66$ (s, 3H), $2.51-2.49(\mathrm{~m}, 3 \mathrm{H}), 2.38-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO, $\delta \mathrm{ppm}$ ) : 194.03 (s), 167.79 (s), 157.72 (s), 150.54 (s), 139.88 (d, $\mathrm{J}=1.4 \mathrm{~Hz}), 135.25(\mathrm{~s}), 128.82(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}), 123.26(\mathrm{~s}), 120.03(\mathrm{~s}), 113.65(\mathrm{~s}), 111.53(\mathrm{~s})$, 108.75 (s), 55.29 (s), 50.90 (s), 41.18 - 40.86 (m), 40.51 (d, J = 21.0 Hz ), 40.20 ( s$), 39.99$ (s), 39.78 ( s ), 39.57 ( s$), 39.36$ ( s$), 37.61$ ( s$), 32.47$ ( s$), 29.51$ ( s$), 27.23$ ( s$), 17.53$ (s).

Mass of $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}, \mathrm{M}^{+}$: 417.39.

## 4-(4-methylphenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline-3carboxamide (5c)

White solid; M.P. : $252-255^{\circ} \mathrm{C}$
IR ( $v_{\max } \mathrm{cm}^{-1}$ ): 3341 ( $\mathrm{N}-\mathrm{H}$ stretch), 2960 (aliphatic C-H stretch), 1656 (C=O), 1598 (C=O), 1441 ( $\mathrm{C}=\mathrm{C}$ stretch), $757 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ out of plane bending).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz},-\mathrm{DMSO}, \delta \mathrm{ppm}$ ) : 9.48 (s, 1H), 8.64 (s, 1H), 7.55 (d, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.23(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 2.51-$
$2.49(\mathrm{~m}, 3 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}$, 3 H ).
${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO, $\delta \mathrm{ppm}$ ) : 194.00 (s), 167.76 (s), 150.70 (s), 144.69 (s), 139.87 (s), 135.25 ( s ), 134.91 ( s$), 128.84$ (d, J = 1.2 Hz ), 127.77 ( s$), 123.26$ ( s$), 120.02$ ( s$), 111.48$ ( s$)$, 108.58 (s), 50.89 (s), 32.47 ( s), 29.52 (s), 27.22 (s), 21.00 ( s), 17.52 (s).

Mass of $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{M}^{+}$: 401.37.

## 4-(4-bromophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline-3carboxamide (5d)

White solid; M.P. : $228-230^{\circ} \mathrm{C}$
IR ( $v_{\max } \mathrm{cm}^{-1}$ ): 3373 ( $\mathrm{N}-\mathrm{H}$ stretch), 2959 (aliphatic $\mathrm{C}-\mathrm{H}$ stretch), $1669(\mathrm{C}=\mathrm{O}), 1597(\mathrm{C}=\mathrm{O})$, $1441\left(\mathrm{C}=\mathrm{C}\right.$ stretch), $747 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ out of plane bending).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz},-\mathrm{DMSO}, \delta \mathrm{ppm}$ ) : $9.55(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 2.48(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.39-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 2 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.88$ ( $\mathrm{s}, 3 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO, $\delta \mathrm{ppm}$ ) : 194.05 (s), 167.52 (s), 151.03 (s), 146.87 (s), 139.73 (s), 135.61 ( s$), 131.11$ (s), 130.12 (s), 128.86 (s), 123.39 ( s$), 120.09$ ( s$), 119.15$ (s), 110.87 (s), 108.06 ( s ), 50.79 ( s ), 38.25 ( s ), 32.49 ( s$), 29.41$ ( s$), 27.24$ ( s$), 17.52$ ( s$), 14.52$ (s).

Mass of $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}, \mathrm{M}^{+}: 467.28$.

## 4-(4-fluorophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline-3carboxamide (5e)

White solid; M.P. : $205-207^{\circ} \mathrm{C}$
IR ( $v_{\max } \mathrm{cm}^{-1}$ ): 3378 ( $\mathrm{N}-\mathrm{H}$ stretch), 2957 (aliphatic C-H stretch), $1668(\mathrm{C}=\mathrm{O}), 1596(\mathrm{C}=\mathrm{O})$, 1441 ( $\mathrm{C}=\mathrm{C}$ stretch), $746 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ out of plane bending).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz},-\mathrm{DMSO}, \delta \mathrm{ppm}$ ) : $9.51(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.23-7.13(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{dd}, \mathrm{J}=10.1,6.6 \mathrm{~Hz}, 3 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 2.49-2.31(\mathrm{~m}, 3 \mathrm{H}), 2.16-$ $2.04(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO, $\delta \mathrm{ppm}$ ) : 194.06 (s), 167.63 (s), 162.07 (s), 159.67 (s), 150.86 (s), 143.71 ( s), 139.76 ( s$), 135.51$ (s), 129.53 (d, J = 8.0 Hz ), 128.84 ( s$), 123.36$ (s), 120.10 ( s$)$, 114.95 (s), 114.74 ( s , 111.18 ( s$), 108.40$ ( s$), 50.82$ (s), 37.88 ( s$), 32.47$ (s), 29.43 ( s$), 27.20$ (s), 17.52 (s).

Mass of $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}, \mathrm{M}^{+}$: 405.37.

## 4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline-3carboxamide (5f)

White solid; M.P. : $255-257^{\circ} \mathrm{C}$
IR ( $v_{\max } \mathrm{cm}^{-1}$ ): 3369 ( $\mathrm{N}-\mathrm{H}$ stretch), 2960 (aliphatic C-H stretch), $1667(\mathrm{C}=\mathrm{O}), 1595(\mathrm{C}=\mathrm{O})$, 1442 ( $\mathrm{C}=\mathrm{C}$ stretch), $748 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ out of plane bending).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz},-\mathrm{DMSO}, \delta \mathrm{ppm}$ ) : $9.54(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.20(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 2.48-$ $2.30(\mathrm{~m}, 3 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO, $\delta \mathrm{ppm}$ ) : 194.07 (s), 167.54 (s), 151.03 (s), 146.44 (s), 139.73 (s), 135.61 (s), 130.62 (s), 129.69 (s), 128.86 (s), 128.20 (s), 123.39 (s), 120.10 ( s$), 110.93$ (s), 108.12 (s), 50.79 (s), 38.16 ( s$), 32.48$ (s), 29.41 ( s$), 27.21$ ( s$), 17.52$ (s).

## 4-(4-nitrophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline-3carboxamide (5g)

Orange yellow solid; M.P. : $207-210^{\circ} \mathrm{C}$
IR ( $v_{\max } \mathrm{cm}^{-1}$ ): 3377 ( $\mathrm{N}-\mathrm{H}$ stretch), 2960 (aliphatic C-H stretch), 1666 (C=O), 1595 (C=O), 1442 ( $\mathrm{C}=\mathrm{C}$ stretch), $745 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ out of plane bending).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz},-\mathrm{DMSO}, \delta \mathrm{ppm}$ ) : 9.61 (s, 1H), $8.84(\mathrm{~s}, 1 \mathrm{H}), 8.06$ (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.49 (d, J = $7.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.40(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 2.48-2.45(\mathrm{~m}, 3 \mathrm{H}), 2.34(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H})$, 0.85 ( $\mathrm{s}, 3 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO, $\delta \mathrm{ppm}$ ) : 194.07 (s), 167.24 (s), 154.93 (s), 151.50 (s), 146.09 (s), 139.60 (s), 136.24 (s), 129.08 (s), 128.88 (s), 123.57 (d, J = 13.7 Hz ), 120.13 (s), 110.16 (s), 107.54 (s), 50.67 (s), 32.50 ( s ), 29.33 ( s$), 27.22$ ( s$), 17.57$ ( s ).

## 4-(4-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline-3carboxamide (5h)

White solid; M.P. : > $300^{\circ} \mathrm{C}$
IR ( $v_{\max } \mathrm{cm}^{-1}$ ): 3388 ( $\mathrm{N}-\mathrm{H}$ stretch), 2957 (aliphatic C-H stretch), 1608 ( $\mathrm{C}=\mathrm{O}$ ), 1521 ( $\mathrm{C}=\mathrm{O}$ ), 1446 ( $\mathrm{C}=\mathrm{C}$ stretch), $749 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ out of plane bending).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz},-\mathrm{DMSO}, \delta \mathrm{ppm}$ ) : $9.39(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.19$ (t, J = $7.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), $6.98-6.89$ (m, 3H), 6.52 (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.80$ (s, 1H), 2.49 - 2.41 (m, 3H), 2.29 (dd, J = 36.1, $16.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.06 (d, J = $13.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 0.99 (s, 3H), 0.87 ( $\mathrm{s}, 3 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO, $\delta \mathrm{ppm}$ ) : 194.09 (s), 167.87 (s), 155.68 (s), 150.44 (s), 139.85 (s), 138.25 ( s ), 135.11 ( s$), 128.79$ (d, J = 9.0 Hz ), 123.27 ( s$), 120.03$ ( s$), 115.02$ ( s$), 111.66$ (s), 108.89 (s), 50.92 (s), 37.52 (s), 32.46 ( s$), 29.52$ (s), 27.18 ( s$), 17.51$ ( s$)$.

## 4-(2-chlorophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline-3carboxamide (5i)

White solid; M.P. : $228-230^{\circ} \mathrm{C}$
IR ( $v_{\max } \mathrm{cm}^{-1}$ ): 3369 ( $\mathrm{N}-\mathrm{H}$ stretch), 2960 (aliphatic C-H stretch), 1667 (C=O), 1595 (C=O), 1442 ( $\mathrm{C}=\mathrm{C}$ stretch), $748 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ out of plane bending).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz},-\mathrm{DMSO}, \delta \mathrm{ppm}$ ) : $9.63(\mathrm{~s}, 1 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.20 (ddd, $\mathrm{J}=13.0,7.6,3.2 \mathrm{~Hz}, 4 \mathrm{H}$ ), $7.14(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{dd}, \mathrm{J}=10.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 2 \mathrm{H}), 2.38-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO, $\delta \mathrm{ppm}$ ) : 193.68 (s), 167.31 (s), 151.51 ( s$), 145.29$ (s), 139.85
(s), 133.94 (s), 131.82 (s), 131.16 (s), 129.13 (s), 128.79 (s), 127.66 (s), 127.42 (s), 123.23
(s), 119.99 (s), 111.60 (s), 108.18 (s), 50.82 (s), 36.60 (s), 32.47 (s), 29.51 ( s$), 27.27$ (s), 17.05 (s).

## 4-(2-bromophenyl)-2,7,7-trimethyl-5-oxo-N-phenyl-1,4,5,6,7,8-hexahydroquinoline-3carboxamide (5j)

White solid; M.P. : $241-242{ }^{\circ} \mathrm{C}$
IR ( $v_{\max } \mathrm{cm}^{-1}$ ): 3373 (N-H stretch), 2959 (aliphatic C-H stretch), 1669 ( $\mathrm{C}=\mathrm{O}$ ), 1597 ( $\mathrm{C}=\mathrm{O}$ ), 1441 ( $\mathrm{C}=\mathrm{C}$ stretch), $747 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ out of plane bending).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz},-\mathrm{DMSO}, \delta \mathrm{ppm}$ ) : $9.65(\mathrm{~s}, 1 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.31(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{dd}, \mathrm{J}=9.3,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 2.47$ ( $\mathrm{s}, 3 \mathrm{H}$ ), $2.38(\mathrm{~d}, \mathrm{~J}=16.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 2 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO, $\delta \mathrm{ppm}$ ) : 193.67 (s), 167.24 (s), 151.40 (s), 147.19 (s), 139.83
(s), 133.41 (s), 132.37 ( s$), 131.25$ ( s$), 128.78$ ( s$), 128.01$ (d, J = 11.0 Hz ), 123.22 ( s$), 122.37$
(s), 120.03 ( s$), 112.05$ ( s$), 108.54$ (s), 50.85 ( s$), 32.48$ ( s$), 29.50(\mathrm{~s}), 27.27(\mathrm{~s}), 16.98$ (s).

