Electronic Supplementary Information

The Electron Sextet on Carbon and the Electron Deficiency on Boron Readily Combine together: Boron-Based Octahedral Dication as a Result

Willi Keller,^{*a} Menyhárt B. Sárosi,^{b,†} Jindřich Fanfrlík,^c Michal Straka,^c Josef Holub^d and Drahomír Hnyk^{*d}

^a Institut für Chemie, Universität Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany

^bWilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103 Leipzig, Germany. Present address: Zentrum für Nanosystemchemie, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany

^cInstitute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10 Praha 6, Czech Republic

^dInstitute of Inorganic Chemistry of the Czech Academy of Sciences, CZ-250 68 Husinec-Řež, Czech Republic

Experimental section

Instrumentation. NMR spectra were recorded on Bruker AVANCE III 500 (¹¹B 160.388 MHz, ³¹P 202.363 MHz) and AVANCE III HD 600 (¹¹B 192.552 MHz, ³¹P 242.945 MHz, ¹³C 150.908 MHz, ¹H 600.15 MHz) at 293 K if not stated otherwise. Chemical shifts were referenced to ext. BF₃·OEt₂ (¹¹B) and 85% H₃PO₄ (³¹P) and TMS. Negative signs indicate an upfield shift. The NMR spectra were processed using SpinWorks 4 (v 4.2.3.0 Kirk Marat, University of Manitoba, Canada) software. High- and low-resolution mass spectra were obtained on a Finnigan Varian MAT 95 with electron ionization at 70 eV.

General Procedures and Materials. All manipulations were conducted using standard high vacuum or inert atmosphere techniques as described by Shriver.¹ Reaction vessels were constructed by sealing the Pyrex 13 mm glass tube of a right-angle PTFE high vacuum valve (J. Young Scientific Glassware, Acton, London) at one end and equipping the other end with an O-ring seal for greaseless connection to the vacuum-line. Solvents were reagent grade, dried and purified according to standard procedures and were finally degassed in repeated cycles before use. 3-Bis-(2,6-diisopropylphenyl)-imidazol-2-yliden freeze-pump-thaw ("Idip") was obtained from Sigma-Aldrich and was used as received after degassing under high-vacuum. PBr₃ and AsBr₃ were freshly vacuum-distilled before use. BBr₃ was stirred over mercury, degassed, and condensed into a trap of -78°C prior to use. Diboron tetrabromide B₂Br₄ was prepared by co-condensation of BBr₃ with copper-vapor onto cooled walls (-196 °C) of a metal-vapor reactor similar to that described by Timms.² After reaction, B₂Br₄ was separated from excess BBr₃ by repeated fractionation until the condensate exhibited a vapor pressure of less than 1 Torr. The pnictogenaboranes $Pn_2B_4Br_4$ (Pn = As or P) were prepared by co-pyrolyses of appropriate mixtures of B₂Br₄ with PnBr₃ and were separated according to the conditions given in the literatures as mentioned in the main text.

Reactions of *closo*-1,2-Pn₂B₄Br₄ (Pn = P, As) with 1,3-Bis-(2,6-diisopropylphenyl)imidazol-2-yliden ("Idip") to monocationic 1,6-Idip₂-P₂B₄Br₃⁺, 4-Idip- Pn_2 B₄Br₃⁺ (1: Pn =P; 2: Pn = As) and dicationic 3,5-Idip₂-P₂B₄Br₂²⁺ (3) : In typical reactions, 0.016 mmoles of *closo*-1,2- Pn_2 B₄Br₄ (6.8 mg Pn = P; 8.2 mg Pn = As) were dissolved in 4 mL CH₂Cl₂ and a dilution of 12.4 mg (0.032 mmol) Idip in 2 mL CH₂Cl₂ was syringed into the stirred solution at -78°C under a constant flow of inert gas. After closure of the Teflon stopcock the mixture was allowed to slowly warm up to room temperature. The still clear solution was syringed under inert gas into an NMR tube and immediately thereafter was analyzed with NMR. After ca 1 h at room temperature a pale white solid started to precipitate. The reaction was completed after 16 h at 0°C for Pn = P. For Pn = As completion was not accomplished due to degradation reactions.

Data for (1a+1b)/2: ¹¹B NMR (ppm, CH₂Cl₂) -2.6 ppm (B3,5), 10.2 ppm (B4), 15.8 ppm (B6). ³¹P NMR (ppm, CH₂Cl₂) -122.7 ppm (P2), d, ^{*l*}J(PP) = 218 Hz; -56.0 ppm (P1), d (br), ^{*l*}J(PP) =192 Hz.

Data for **2**: ¹¹B NMR (ppm, CH₂Cl₂) 7.2 ppm (B3,5), 21.5 ppm (B4), 23.5 ppm (B6).

Data for **3:** ¹¹B NMR (ppm, CH₂Cl₂) -1.2 ppm (B3,5), 17.4 ppm (B4,6). ³¹P NMR (ppm, CH₂Cl₂) -145.7 ppm (P1,2). MS (neg. ESI) *m/z* 1272.6 as anionic adduct with 2Br⁻/Cl⁻/HCl.

Computational details. Magnetic-property computations were obtained by means of the GIAO-PBE1PBE method incorporated into Gaussian16³ utilizing the IGLO-II basis with the B3LYP/6-311+G(2d,p) + D3(BJ) geometries for IDip-based species and with the B3LYP/6-311+G(2d,p) geometries for NHC-based species. Second derivative analyses the confirmed them to be minima on the respective potential energy surfaces. Additional NMR calculations were performed using the same geometries as in the quasi-relativistic GIAO-PBE1PBE computations with the Amsterdam Density Functional (ADF) code⁴ employing the PBE0 functional. The two-component relativistic zeroth-order regular approximation (ZORA) method⁵ including scalar and spin-orbit (SO)⁶ corrections was employed for these computations; the all-electron triple-zeta basis set plus one polarization function (denoted TZ2P; from the ADF library) was used for all atoms. Magnetic shieldings were converted into relative ¹¹B chemical shifts using the ¹¹B NMR of B₂H₆⁷ and the ³¹P NMR of PH₃⁸ as the primary references, respectively. Reaction pathways were searched in terms of computing SMD energies in CH₂Cl₂ or THF at the B3LYP/6-311+G(2d,p) +D3(BJ) level. Zero-point, heat-capacity, and entropy corrections with frequencies were carried out at the B3LYP/6-31+G(d) + D3(BJ) level. Electrostatic potentials were computed on 0.001 a.u. at the HF/cc-pVDZ level using Gaussian16 and Molekel4.3⁹ programs. It has recently been shown that this basis set size is sufficient for these purposes.¹⁰ The IAO/IBO method¹¹ was used to connect quantitative SCF wave functions to a qualitative chemical picture, naturally revealing the nature of the orbitals. The IBOview program was used.¹¹ The corresponding input file for the latter were generated at the B3LYP/def2-TZVP//B3LYP/6-311+G** level using the Turbomole6.6¹² program package.

Fig. S1 160.388 MHz ¹¹B NMR spectrum of the reaction of $P_2B_4Br_4$ with IDip in CH₂Cl₂ immediately after warm-up with the exclusive formation of a mixture of [4-IDip-1,2-P₂B₄Br₃]⁺ Br⁻ (1a) and [1,6-Idip₂-1,2-P₂B₄Br₃]⁺ Br⁻ (1b).

Fig. S2 160.388 MHz ¹¹B NMR spectrum of the reaction of $P_2B_4Br_4$ with Idip in CH₂Cl₂ after 1 day at 0°C. Formation of [3,5-Idip₂-1,2-P₂B₄Br₂]²⁺ 2Br⁻ (3).

Fig. S3 242.945 MHz ³¹P NMR spectrum of the reaction of $P_2B_4Br_4$ with Idip in CH₂Cl₂ immediately after warm-up. Formation of a mixture of [4-Idip-1,2-P₂B₄Br₃]⁺ Br⁻ (1a) and [1,6-Idip₂-1,2-P₂B₄Br₃]⁺ Br⁻ (1b).

Fig. S4 242.945 MHz ³¹P NMR spectrum of the reaction of $P_2B_4Br_4$ with Idip in CH₂Cl₂ after 1 day at 0°C. Formation of [3,5-Idip₂-1,2-P₂B₄Br₂]²⁺ 2Br⁻.

Fig. S5 160.388 MHz ¹¹B NMR spectrum of two

reactions of $P_2B_4Br_4$ with Idip in THF in approximately 1:1 molar ratios immediately after warm-up. Left: 1st attempt, right: 2nd attempt. The differences in spectra between 1st and 2nd attempts could be caused by deviations of the molar amounts (the amount of only 8 mg of Idip could not be weighted exactly). Continuous formation of a mixture of [4-Idip-1,2-P₂B₄Br₃]⁺ Br⁻ (**1a**) and [1,6-Idip₂-1,2-P₂B₄Br₃]⁺ Br⁻ (**1b**).

Fig. S6 202.363 MHz ³¹P NMR spectrum of two reactions of P₂B₄Br₄ with Idip in THF immediately after recording of the ¹¹B spectra of Fig. S5. Left: 1st attempt, right: 2nd attempt. Continuous formation of a mixture of [4-Idip-1,2-P₂B₄Br₃]⁺ Br⁻ (1a) and [1,6-Idip₂-1,2-P₂B₄Br₃]⁺ Br⁻ (1b).

Fig. S7 ESI-MS (negative ion polarity) with the adduct of $[3,5-(Idip)_2-1,2-P_2B_4Br_2]^{2+}$ (3) with 2Br-/Cl-/HCl at m/e 1273.

Fig. S8 Sector of ESI-MS (negative ion polarity) with the adduct of $[3,5-Idip_2-1,2-P_2B_4Br_2]^{2+}$ (3) with 2Br-/Cl-/HCl at m/e 1273 on top and calculated below.

Fig. S9 192.55 MHz ¹¹B NMR spectrum of the reaction of $As_2B_4Br_4$ with Idip in CH_2Cl_2 after 10 min heating at 50°C. Formation of [4-Idip- $As_2B_4Br_3$]⁺Br⁻ (2) besides unreacted $As_2B_4Br_4$.

Table S1 Species related to the reaction of ID and Idip ligands with $P_2B_4Br_4$ in dichloromethane^a

species	PG	B3LYP/ 6-311+G(2d) +D3PL	ZPE	NIF ^b	Entropy	Ср	Solv ^c
Br⁻	K	-2574.232916	0.00	0	39.01	1.48	-49.21
$P_2B_4Br_4$	C _{2v}	-11078.975677	15.23	0	114.78	8.05	-8.91
ID	C _{2v}	-688.462899	145.73	-2	102.64	7.52	-18.23
ID	C ₂	-688.465093	145.78	0	113.28	8.60	-19.17
Idip	C _{2v}	-1160.380315	358.82	-2	184.08	18.33	-20.67
Idip	C ₂	-1160.380441	358.94	0	196.60	19.43	-20.71
Br-Idip ⁻	C _{2v}	-3734.609491	358.06	-3	189.29	19.22	-58.47
Br-Idip ⁻	C ₂	-3734.609368	358.20	-2	194.24	19.72	-58.62
Br-Idip ⁻	C ₁	-3734.614001	358.37	0	205.22	20.75	-57.17
Br-Idip ₂ -	D _{2d}	-4894.990173	716.44	0	303.25	35.95	-65.26
Br_2 - Iip_2 -2	D ₂	-7469.175268	716.50	0	371.23	42.04	-135.51
$1-ID-P_2B_4Br_4$	C _s	-11767.478268	162.23	0	181.43	16.97	-26.69
$1,2-ID_2-P_2B_4Br_4$	C _{2v}	-12455.954094	307.58	0	261.90	26.68	-32.49
$1,2-ID_2-P_2B_4Br_4$	C ₁	-12455.954912	308.84	0	255.90	26.29	-38.89
TS1-ID-a	C_1	-12455.943766	308.28	194	242.43	25.64	-35.11
$1,6-ID_2-P_2B_4Br_4$	C_1	-12455.979391	309.38	0	242.58	25.82	-36.97

$1,6-ID-P_2B_4Br_3^+$	C _s	-9881.651361	310.33	0	234.01	24.32	-58.58
4 -ID- $P_2B_4Br_3$ - a^+	C _s	-9193.116562	162.63	-1	165.44	15.02	-53.43
$4-ID-P_2B_4Br_3-b^+$	C _s	-9193.121915	162.56	-1	168.85	15.17	-54.42
$4-ID-P_2B_4Br_3-c^+$	Cs	-9193.124588	162.65	-1	168.82	15.19	-54.58
$4-ID-P_2B_4Br_3-d^+$	C ₁	-9193.124849	162.87	0	171.74	15.61	-52.99
TS2-ID	C ₁	-12455.944898	308.46	181	247.18	25.75	-35.65
$1,3-ID_2-P_2B_4Br_4-a$	C ₁	-12455.996757	310.60	0	247.66	25.84	-38.92
$1,3-ID_2-P_2B_4Br_4-b$	C ₁	-12455.997531	309.71	0	246.63	25.85	-38.15
$1,3-ID_2-P_2B_4Br_3^+$	C ₁	-9881.647344	310.37	0	234.81	24.44	-63.23
TS3(+)-ID	C_1	-9881.606339	309.01	34	236.58	24.32	-59.04
$3,5-ID_2-P_2B_4Br_3^+$	C1	-9881.662383	310.68	0	233.76	24.31	-58.08
$3-ID-P_2B_4Br_3^+$	C ₁	-9193.126005	162.75	0	172.83	15.67	-54.80
$3,5-ID_2-P_2B_4Br_2^{+2}$	C ₂	-7307.211449	310.63	0	228.85	23.19	-137.63
$[3,5-ID_2-P_2B_4Br_2][Br]_2$	C ₂	-12456.040311	311.54	0	248.27	28.62	-42.64
TS4(+)-ID	C ₁	-9881.604703	309.58	127	234.36	24.26	-59.78
INT(+)-ID	C ₁	-9881.623918	309.76	0	241.76	24.75	-59.25
TS5(+)-ID	C ₁	-9881.605778	309.67	19	237.00	24.30	-62.49
1-Idip-P ₂ B ₄ Br ₄	Cs	-12239.385003	375.39	0	262.50	27.93	-23.50
1-Idip-P ₂ B ₄ Br ₄	Cs	-12239.402630	376.42	0	252.06	27.42	-27.35
$1,2-Idip_2-P_2B_4Br_4$	C_{2v}	-13399.795153	735.30	-3	385.10	46.15	-35.13
$1,2-Idip_2-P_2B_4Br_4$	Cs	-13399.800150	735.84	-1	395.81	46.91	-38.94
TS11-Idip-a	C ₁	-13399.775217	737.47	156	377.01	45.95	-34.72
TS11-Idip-b	C ₁	-13399.783915	737.24	160	377.89	46.10	-34.79
$1,6-Idip_2-P_2B_4Br_4$	C ₁	-13399.829270	738.89	0	381.55	46.35	-39.65
3-Idip-P ₂ B ₄ Br ₄	C ₁	-12239.404132	377.05	0	248.50	27.16	-25.22
$1,6-\text{Idip}_2-\text{P}_2\text{B}_4\text{Br}_3^+$	C _s	-10825.500964	738.76	-1	368.20	44.55	-58.12
$4-Idip-P_2B_4Br_3-a^+$	Cs	-9665.056418	377.46	0	240.73	25.86	-51.76
$4-Idip-P_2B_4Br_3-b^+$	Cs	-9665.052019	377.15	0	240.08	25.94	-52.30
TS22-Idip	C ₁	-13399.790019	736.98	82	382.75	46.35	-35.24
$1,3-Idip_2-P_2B_4Br_4$	C ₁	-13399.837779	738.26	0	382.38	46.45	-37.03
$1,3-\text{Idip}_2-\text{P}_2\text{B}_4\text{Br}_3^+$	C ₁	-10825.485110	738.86	0	375.72	45.27	-61.21
TS33(+)-Idip	C ₁	-10825.457323	737.54	153	377.56	45.22	-59.56
$3,5-\text{Idip}_2-\text{P}_2\text{B}_4\text{Br}_3^+$	C_1	-10825.500224	739.12	0	372.84	45.15	-59.34
$3-Idip-P_2B_4Br_3^+$	Cs	-9665.045953	376.81	-2	233.55	25.07	-54.52
$3\text{-Idip-P}_2\text{B}_4\text{Br}_3^+$	C ₁	-9665.057519	377.05	0	243.70	26.07	-54.39
$1,2-Idip_2-P_2B_4Br_2^{+2}$	C _{2v}	-8250.833115	735.36	-3	367.71	43.54	-134.30
$1,2-Idip_2-P_2B_4Br_2^{+2}$	C ₂	-8250.923877	737.16	0	365.18	44.16	-133.71
$3,5-\text{Idip}_2-\text{P}_2\text{B}_4\text{Br}_2^{+2}$	C _{2v}	-8251.060705	738.47	-3	357.88	42.65	-134.54
$3,5-Idip_2-P_2B_4Br_2^{+2}$	C ₂	-8251.087386	738.47	0	357.88	42.65	-133.72
$[3,5-Idip_2-P_2B_4Br_2][Br]_2$	C_2	-13399.872545	739.71	0	394.00	46.74	-43.60
1844(+)-ldıp	C_1	-10825.460278	737.83	143	378.78	45.27	-59.50
$\frac{INT(+)-Idp-a}{DTT(+)-Idp-a}$	C_1	-10825.470544	738.69		375.12	45.34	-58.97
INT(+)-Idip-b	C_1	-10825.463969	738.58	0	375.18	45.31	-60.38
TS55(+)-Idip	C_1	-10825.453653	738.00	216	377.88	45.17	-60.70
$(ID)_2$	D_2	-13/6.965565	292.79	0	176.24	17.38	-24.69
(ld1p) ₂	$ D_2 $	-2320.747067	721.27	2	307.52	36.94	-22.37

- (a) Point Group, total energy at B3LYP/6-311+G(2d,p)+D3(BJ) (hartrees), zero-point energies (kcal.mol⁻¹), number of imaginary frequencies, entropies (cal.mol⁻¹.K⁻¹), heat capacity correction to 298K (kcal.mol⁻¹), and free energy of solvation in dichloromethane (kcal.mol⁻¹) using the SMD solvation model. Geometries, frequencies, and solvation at the B3LYP/6-31+G(d)+D3(BJ) level. Single-point energies at B3LYP/6-311+G(2d,p)+D3(BJ) level.
- (b) Number of imaginary frequencies. For species labelled with "TS", the NIF value is the value of the single imaginary frequencies in cm⁻¹.
- (c) Solvation free energies (kcal.mol⁻¹) determined by the difference in SMD(CH₂Cl₂)/B3LYP/6-31+G(d)+D3(BJ) and B3LYP/6-31+G(d)+D3(BJ) energies.

Table S2 Cartesian coordinates of all the detectable species at B3LYP/6-311+G** level

Р	-0.00066400	-0.00016500	-3.42571400
В	0.10824900	-1.25888800	-1.84480700
В	0.10792300	1.25880700	-1.84487600
В	0.15414100	-0.00008900	-0.64460000
Р	1.70439300	0.00040700	-1.91574600
В	-1.10583500	-0.00013900	-1.76715400
Br	-3.01501900	-0.00043400	-1.77475200
Br	0.04053900	-3.17186300	-1.82933000
Br	0.03850700	3.17173500	-1.82928500
С	0.31492600	-0.00000900	0.90556500
Ν	1.49643900	0.00023700	1.57328900
Ν	-0.64954500	-0.00020700	1.85207400
С	1.26908600	0.00015400	2.93567100
С	-0.07697100	-0.00026000	3.10992500
Н	2.07855300	0.00033900	3.64219700
Н	-0.68165100	-0.00056700	3.99848600
С	-2.08724900	-0.00055200	1.65523700
С	-2.74250900	-1.23920900	1.60864100
С	-2.74315600	1.23776800	1.60883600
С	-4.13674200	-1.20831900	1.54974500
С	-4.13739700	1.20615500	1.54999500

4-Idip-P₂B₄Br₃⁽⁺⁾, 1a

С	-4.82487300	-0.00126000	1.53228000
Н	-4.68997500	-2.13685800	1.50913600
Н	-4.69113500	2.13439500	1.50961100
Н	-5.90755600	-0.00155700	1.49016700
С	2.81278000	0.00070800	0.96813700
С	3.41539400	1.24168700	0.69582200
С	3.41632500	-1.23985400	0.69601200
С	4.68523200	1.20897100	0.11556000
С	4.68615700	-1.20630700	0.11575900
С	5.31118800	0.00153800	-0.17027300
Н	5.18821200	2.13677600	-0.11955400
Н	5.18978100	-2.13380700	-0.11917900
Н	6.29578000	0.00191500	-0.62249600
С	-1.98912900	-2.56022800	1.63751000
С	-2.62096500	-3.61442500	0.71817100
С	-1.87631000	-3.09798200	3.07586400
Н	-0.97541900	-2.38021700	1.26776300
Н	-2.77864300	-3.22569100	-0.28880000
Н	-1.96468300	-4.48422600	0.64760800
Н	-3.58055700	-3.96267300	1.10663200
Н	-1.36755300	-2.39463500	3.73835600
Н	-2.86874300	-3.28992800	3.49121200
Н	-1.31701100	-4.03677200	3.08818200
С	-1.99049700	2.55921000	1.63783700
С	-1.87774500	3.09678600	3.07626300
С	-2.62297800	3.61321200	0.71872300
Н	-0.97673200	2.37982400	1.26795200
Н	-1.36857600	2.39352800	3.73853500
Н	-1.31888900	4.03583500	3.08865700
Н	-2.87019100	3.28820300	3.49182600
Н	-2.78046300	3.22455700	-0.28830600

Н	-3.58275400	3.96084500	1.10727700
Н	-1.96719400	4.48339600	0.64829400
С	2.74480100	-2.56199800	1.03614700
С	3.07564400	-2.98206200	2.48154100
С	3.12002900	-3.69043700	0.06688600
Н	1.66211600	-2.41987900	0.96711000
Н	2.75662900	-2.23821900	3.21293400
Н	2.57840800	-3.92432200	2.72337300
Н	4.15243500	-3.12719000	2.59837700
Н	2.99048500	-3.39345800	-0.97447200
Н	4.15425200	-4.01269500	0.20799600
Н	2.48304400	-4.55787600	0.24934800
С	2.74286800	2.56333400	1.03582900
С	3.11746900	3.69210100	0.06669400
С	3.07313700	2.98362600	2.48130800
Н	1.66030100	2.42044400	0.96659200
Н	2.98832300	3.39510300	-0.97470400
Н	2.47986300	4.55908300	0.24913200
Н	4.15145100	4.01503900	0.20804200
Н	2.75464400	2.23948300	3.21262600
Н	4.14979400	3.12963800	2.59829500
Н	2.57508000	3.92546000	2.72309700

1,6-Idip₂-P₂B₄Br₃⁽⁺⁾, 1b

Р	-1.6040	-1.1002	0.0000
Р	-2.1983	1.4783	0.0000
В	-1.0265	0.4171	1.2183
В	-1.0265	0.4171	-1.2183
В	-0.2794	1.5314	0.0000
В	0.1524	-0.0547	0.0000

Br	1.8099	-1.0330	0.0000
Br	-0.8010	0.4970	3.1403
Br	-0.8010	0.4970	-3.1403
С	0.5839	2.8457	0.0000
С	1.0756	5.0457	0.0000
С	2.2499	4.3616	0.0000
С	-0.7094	-2.8550	0.0000
С	-0.6844	-5.0024	0.6787
С	-0.6844	-5.0024	-0.6787
С	-0.5904	-3.2570	2.4701
С	-1.7735	-2.9606	3.1696
С	0.6921	-3.2402	3.0611
С	-1.6438	-2.6128	4.5206
С	0.7594	-2.8562	4.4050
С	-0.3932	-2.5491	5.1278
С	-0.5904	-3.2570	-2.4701
С	0.6921	-3.2402	-3.0611
С	-1.7735	-2.9606	-3.1696
С	0.7594	-2.8562	-4.4050
С	-1.6438	-2.6128	-4.5206
С	-0.3932	-2.5491	-5.1278
С	2.9858	2.0234	0.0000
С	3.4941	1.6060	-1.2415
С	3.4941	1.6060	1.2415
С	4.6227	0.7781	-1.2110
С	4.6227	0.7781	1.2110
С	5.1884	0.3805	0.0000
С	-1.3291	4.5102	0.0000
С	-1.9556	4.7146	-1.2428
С	-1.9556	4.7146	1.2428
С	-3.2652	5.2083	-1.2110

С	-3.2652	5.2083	1.2110
С	-3.9075	5.4633	0.0000
С	-3.1572	-3.0853	-2.5417
С	-3.8524	-4.3674	-3.0441
С	-4.0364	-1.8462	-2.7924
С	-3.1572	-3.0853	2.5417
С	-4.0364	-1.8462	2.7924
С	-3.8524	-4.3674	3.0441
С	1.9379	-3.7536	-2.3423
С	3.2113	-2.9414	-2.6381
С	2.1829	-5.2332	-2.7155
С	1.9379	-3.7536	2.3423
С	2.1829	-5.2332	2.7155
С	3.2113	-2.9414	2.6381
С	2.8527	2.0195	2.5615
С	3.6247	3.1845	3.2110
С	2.7157	0.8354	3.5329
С	2.8527	2.0195	-2.5615
С	2.7157	0.8354	-3.5329
С	3.6247	3.1845	-3.2110
С	-1.2639	4.3896	2.5631
С	-2.2268	3.7829	3.5986
С	-0.5588	5.6310	3.1467
С	-1.2639	4.3896	-2.5631
С	-0.5588	5.6310	-3.1467
С	-2.2268	3.7829	-3.5986
Ν	0.0645	4.1076	0.0000
Ν	1.9333	3.0175	0.0000
Ν	-0.6895	-3.6738	1.0833
Ν	-0.6895	-3.6738	-1.0833
Н	0.8601	6.1019	0.0000

Η	3.2756	4.6936	0.0000
Η	-0.6784	-5.8083	1.3942
Н	-0.6784	-5.8083	-1.3942
Н	-2.5327	-2.3881	5.1015
Η	1.7235	-2.8192	4.9020
Н	-0.3142	-2.2696	6.1751
Н	1.7235	-2.8192	-4.9020
Η	-2.5327	-2.3881	-5.1015
Н	-0.3142	-2.2696	-6.1751
Η	5.0564	0.4279	-2.1422
Н	5.0564	0.4279	2.1422
Н	6.0690	-0.2566	0.0000
Н	-3.7955	5.3829	-2.1411
Н	-3.7955	5.3829	2.1411
Н	-4.9242	5.8470	0.0000
Н	-3.0415	-3.1842	-1.4572
Н	-3.2543	-5.2594	-2.8231
Н	-4.8320	-4.4843	-2.5659
Н	-4.0063	-4.3283	-4.1287
Н	-3.5373	-0.9270	-2.4723
Н	-4.2907	-1.7400	-3.8529
Н	-4.9767	-1.9397	-2.2372
Н	-3.0415	-3.1842	1.4572
Η	-3.5373	-0.9270	2.4723
Η	-4.9767	-1.9397	2.2372
Н	-4.2907	-1.7400	3.8529
Н	-3.2543	-5.2594	2.8231
Η	-4.0063	-4.3283	4.1287
Н	-4.8320	-4.4843	2.5659
Н	1.7613	-3.7035	-1.2634
Н	3.0655	-1.8741	-2.4662

Η	4.0236	-3.2835	-1.9862
Н	3.5476	-3.0795	-3.6722
Н	1.3199	-5.8671	-2.4902
Н	2.3909	-5.3280	-3.7877
Н	3.0453	-5.6274	-2.1648
Н	1.7613	-3.7035	1.2634
Н	1.3199	-5.8671	2.4902
Н	3.0453	-5.6274	2.1648
Н	2.3909	-5.3280	3.7877
Н	3.0655	-1.8741	2.4662
Н	3.5476	-3.0795	3.6722
Н	4.0236	-3.2835	1.9862
Н	1.8346	2.3667	2.3527
Н	3.6717	4.0577	2.5504
Н	3.1386	3.4912	4.1446
Н	4.6532	2.8845	3.4447
Н	2.1947	0.0024	3.0564
Н	3.6920	0.4840	3.8860
Н	2.1320	1.1363	4.4090
Н	1.8346	2.3667	-2.3527
Н	2.1947	0.0024	-3.0564
Н	2.1320	1.1363	-4.4090
Н	3.6920	0.4840	-3.8860
Н	3.6717	4.0577	-2.5504
Н	4.6532	2.8845	-3.4447
Н	3.1386	3.4912	-4.1446
Н	-0.4980	3.6297	2.3670
Н	-2.7963	2.9504	3.1743
Н	-1.6567	3.3977	4.4501
Н	-2.9326	4.5283	3.9825
Н	0.1877	6.0399	2.4573

Η	-1.2870	6.4219	3.3617
Н	-0.0486	5.3738	4.0825
Н	-0.4980	3.6297	-2.3670
Н	0.1877	6.0399	-2.4573
Н	-0.0486	5.3738	-4.0825
Н	-1.2870	6.4219	-3.3617
Н	-2.7963	2.9504	-3.1743
Н	-2.9326	4.5283	-3.9825
Н	-1.6567	3.3977	-4.4501

4-Idip-As₂B₄Br₃⁽⁺⁾, 2

As	0.10756 -0.00039 -3.3528
В	0.11309 -1.28181 -1.60058
В	0.11358 1.28154 -1.60094
В	0.12132 0.00004 -0.42388
As	1.87658 -0.00052 -1.61442
В	-1.07811 0.00009 -1.6211
Br	-2.99159 0.00043 -1.68861
Br	-0.0016 -3.19375 -1.53512
Br	0. 3.19358 -1.53652
С	0.16986 -0.00025 1.13776
Ν	1.30461 -0.00091 1.88583
Ν	-0.85432 -0.0006 2.0219
С	0.98805 -0.0018 3.2307
С	-0.36521 -0.0016 3.31506
Н	1.74975 -0.0024 3.98855
Н	-1.02777 -0.00194 4.16119
С	-2.28021 0.00036 1.74937
С	-2.93472 -1.23748 1.67537
С	-2.93301 1.23912 1.67512

С	-4.3246 -1.20518 1.5507
С	-4.3229 1.20872 1.55041
С	-5.01006 0.00223 1.49935
Н	-4.87627 -2.13313 1.48506
Н	-4.8733 2.1374 1.48454
Н	-6.0895 0.00298 1.40552
С	2.66336 -0.00037 1.38625
С	3.28797 1.24052 1.16721
С	3.28884 -1.24072 1.16687
С	4.60494 1.20817 0.70278
С	4.60585 -1.20734 0.70253
С	5.25453 0.00066 0.47479
Н	5.1265 2.13629 0.51354
Н	5.12806 -2.13507 0.51312
Н	6.27608 0.00109 0.11373
С	-2.18668 -2.56019 1.74236
С	-2.78884 -3.62095 0.81082
С	-2.12739 -3.08824 3.18763
Н	-1.16026 -2.38573 1.40699
Н	-2.91179 -3.24017 -0.20392
Н	-2.13173 -4.49198 0.76961
Н	-3.76123 -3.96509 1.17017
Н	-1.63739 -2.38424 3.86317
Н	-3.13493 -3.2717 3.56913
Н	-1.57469 -4.0303 3.22541
С	-2.18309 2.56079 1.74205
С	-2.1214 3.08786 3.18759
С	-2.78476 3.623 0.81189
Н	-1.15729 2.38513 1.40542
Н	-1.63161 2.38279 3.86214
Н	-1.56736 4.02914 3.22532

Н	-3.12826	3.27249	3.57033
Н	-2.90943	3.24305	-0.20296
Н	-3.75621	3.96839	1.17258
Н	-2.1264	4.49307	0.77045
С	2.58661	-2.56247	1.43801
С	2.8133	-3.00762	2.89569
С	3.01862	-3.67591	0.47515
Н	1.51279	-2.41027	1.29676
Н	2.45089	-2.27053	3.61391
Н	2.29121	-3.94783	3.08791
Н	3.87787	-3.16595	3.08519
Н	2.95152	-3.36099	-0.56719
Н	4.04197	-4.00342	0.67208
Н	2.36992	-4.54423	0.60353
С	2.58479	2.56166	1.43892
С	3.01731	3.67639	0.4778
С	2.80957	3.00541	2.89733
Н	1.51121	2.40908	1.29627
Н	2.95158	3.36261	-0.56497
Н	2.368	4.54421	0.60643
Н	4.04025	4.00422	0.6763
Н	2.44665	2.26745	3.61439
Н	3.87384	3.16405	3.08822
Н	2.28681	3.94517	3.0899

3,5-Idip₂-P₂B₄Br₂⁽²⁺⁾, 3

19

Р	-0.06569500	0.08698400	1.69253300
В	-1.24691900	0.11697900	0.05217400
В	1.25028400	0.02190800	0.15029700
В	0.04846300	0.04682300	-1.10092600
Р	0.06641700	1.66894100	0.08926800
В	-0.04439100	-1.15082500	0.09528000
Br	-0.12694400	-3.04981700	0.07366500
Br	0.11453400	-0.00828200	-3.00843400
С	2.79999500	0.06097400	0.22760100
Ν	3.56594900	1.18190400	0.17994600
Ν	3.65624100	-0.96889500	0.40187800
С	4.89674600	0.85009300	0.33033400
С	4.95328500	-0.50177800	0.46647100
Н	5.66963300	1.59714400	0.33030300
Н	5.78401100	-1.17148100	0.60137700
С	-2.78793200	0.27498200	-0.04749600
Ν	-3.45542500	1.45723000	-0.01844900
Ν	-3.72872800	-0.68187300	-0.20739500
С	-4.80987600	1.23920500	-0.16426900
С	-4.98106200	-0.10486200	-0.28128500
Н	-5.51681500	2.04936100	-0.16129000
Н	-5.86715600	-0.70335700	-0.39648900
С	-2.85108800	2.74566900	0.24676100
С	-2.69892000	3.12669900	1.59048500
С	-2.42719100	3.52380200	-0.84161700
С	-2.08182200	4.35680800	1.82885300
С	-1.82916800	4.75005300	-0.54178800
С	-1.65642300	5.15815000	0.77529800
Н	-1.94596900	4.69786200	2.84672800
Н	-1.48869100	5.38796500	-1.34602200
Н	-1.19128300	6.11411100	0.98411300

С	-3.53278700	-2.11943900	-0.16687200
С	-3.40852700	-2.81239300	-1.37837100
С	-3.56411100	-2.73678700	1.09150900
С	-3.34665600	-4.20470600	-1.29871000
С	-3.49659200	-4.13089900	1.11021800
С	-3.40045800	-4.85574900	-0.07125600
Н	-3.25489400	-4.78733000	-2.20559000
Н	-3.52454600	-4.65419300	2.05758300
Н	-3.36172200	-5.93791600	-0.03595400
С	3.32190600	-2.37426300	0.52461500
С	3.37149800	-3.16204700	-0.63241100
С	3.04884300	-2.87388700	1.80559100
С	3.17085200	-4.53373600	-0.46500400
С	2.85203000	-4.25124200	1.91263900
С	2.92516100	-5.07198000	0.79244000
Н	3.20716200	-5.18706000	-1.32716300
Н	2.64502000	-4.68867600	2.88069400
Н	2.78313500	-6.14061300	0.90045700
С	3.06155300	2.53239700	0.04294100
С	2.69858400	3.21526900	1.21528300
С	2.93833400	3.07088200	-1.24905800
С	2.18815600	4.50615500	1.06119900
С	2.41008000	4.36130100	-1.34015500
С	2.04297800	5.06855600	-0.20063100
Н	1.89861400	5.07400100	1.93513000
Н	2.29280700	4.82127800	-2.31184100
Н	1.64597500	6.07181800	-0.29889000
С	-3.68048900	-1.95466700	2.39008300
С	-2.56380700	-2.32487300	3.37863300
С	-5.06954300	-2.13701900	3.02390400
Н	-3.56573400	-0.89196200	2.16359500

Н	-1.57790700	-2.24304300	2.91486300
Н	-2.59403200	-1.66486900	4.24885800
Н	-2.67067800	-3.34964000	3.73997400
Н	-5.86378600	-1.82847800	2.34005200
Н	-5.24493600	-3.18287100	3.28594300
Н	-5.15566700	-1.54282800	3.93694000
С	-3.36241900	-2.09942100	-2.71999700
С	-4.75936300	-2.05580900	-3.36576800
С	-2.34268300	-2.72964400	-3.67935900
Н	-3.04351600	-1.06766400	-2.54258800
Н	-5.48942400	-1.55197500	-2.72844700
Н	-4.72223600	-1.52519400	-4.32006900
Н	-5.12623400	-3.06732100	-3.55558400
Н	-1.36422100	-2.83935800	-3.20849800
Н	-2.66887500	-3.71352200	-4.02280500
Н	-2.22819700	-2.10053800	-4.56454600
С	2.86760800	2.59973900	2.59564800
С	1.71754600	2.95504800	3.54817400
С	4.22225200	3.00513900	3.20550400
Н	2.87068800	1.51130600	2.48440600
Н	0.74237300	2.77585300	3.09045700
Н	1.78616400	2.35403700	4.45728300
Н	1.75403800	4.00327500	3.85199600
Н	5.05890900	2.70488900	2.57170000
Н	4.27488600	4.08863400	3.33553300
Н	4.35494400	2.53891800	4.18443300
С	3.40201900	2.31761700	-2.48710600
С	4.90278300	2.56996500	-2.73541200
С	2.60527700	2.67219400	-3.74889100
Н	3.26464600	1.24731000	-2.30201600
Н	5.52177300	2.26813400	-1.88979100

Н	5.23880900	2.01257000	-3.61249300
Н	5.08386500	3.63162600	-2.91934500
Н	1.52997800	2.59333700	-3.58994500
Н	2.82979100	3.68366200	-4.09464200
Н	2.87648400	1.98987000	-4.55673700
С	2.99332700	-1.97974300	3.03423700
С	4.29878400	-2.07626400	3.84282500
С	1.77429700	-2.28537400	3.91724800
Н	2.89506100	-0.94322700	2.69791000
Н	5.16687000	-1.80261900	3.23868800
Н	4.26465500	-1.41146500	4.70938900
Н	4.45381200	-3.09533900	4.20462100
Н	0.84943200	-2.29766100	3.33532200
Н	1.86577200	-3.25640100	4.40780300
Н	1.67964300	-1.53248100	4.70317900
С	3.64075800	-2.57691700	-2.00927900
С	2.61279500	-3.05725500	-3.04533100
С	5.07638200	-2.88917000	-2.46590500
Н	3.54399500	-1.48936400	-1.94391000
Н	1.59141700	-2.87193600	-2.70833500
Н	2.76257300	-2.53145700	-3.99091000
Н	2.71487900	-4.12569600	-3.24639500
Н	5.81748100	-2.50677700	-1.75972900
Н	5.22923200	-3.96731200	-2.55478300
Н	5.27354200	-2.43963400	-3.44191000
С	-2.61023100	3.06511000	-2.27917300
С	-1.44045800	3.47754200	-3.18235100
С	-3.94389200	3.58478000	-2.84732200
Н	-2.65051900	1.97159600	-2.28141200
Н	-0.47860800	3.20525900	-2.74357400
Н	-1.52457000	2.97983500	-4.15004600

Н	-1.43471600	4.55343100	-3.37009300
Н	-4.79798200	3.24747000	-2.25668600
Н	-3.95648900	4.67730000	-2.85778500
Н	-4.08304300	3.23392400	-3.87227300
С	-3.23554700	2.28286200	2.73662600
С	-4.63755900	2.77630100	3.14189300
С	-2.30462700	2.24722600	3.95544600
Н	-3.33962800	1.25379500	2.38319500
Н	-5.33145700	2.76435600	2.29904100
Н	-5.05094600	2.14392500	3.93078400
Н	-4.58984100	3.80093200	3.51811600
Н	-1.29573000	1.92720200	3.68785600
Н	-2.23111000	3.22229200	4.44110600
Н	-2.69443500	1.54700700	4.69726500

References

- D. F. Shriver and M. A. Drezdon in *The Manipulation of Air-Sensitive Compounds*, 2nd ed., John Wiley & Sons, New York, 1986.
- 2. P. L. Timms, Adv. Inorg. Chem. Radiochem., 1972, 14, 121.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, *Gaussian 16, Revision C.01*, Gaussian, Inc., Wallingford CT, USA, 2016.
 - 4. (a) G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders and T. Ziegler, *J. Comput. Chem.*, 2001, 22, 93; (b) E. J. Baerends, J. Autschbach, A.

Bérces, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, L.
Fan, T. H. Fischer, C. Fonseca Guerra, S. J. A. van Gisbergen, J. A. Groeneveld, O. V. Gritsenko,
M. Grüning, F. E. Harris, P. van den Hoek, H. Jacobsen, G. van Kessel, F. Kootstra, E. van
Lenthe, D. A. McCormack, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye,
W. Ravenek, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. G. Snijders, M. Sola, M. Swart, D.
Swerhone, G. te Velde, P. Vernooijs, L. Versluis, O. Visser, E. van Wezenbeek, G. Wiesenekker,
S. K. Wolff, T. K. Woo, T. Ziegler, ADF2004.01, SCM, Theoretical Chemistry, Vrije
Universiteit, Amsterdam, Netherlands, 2004.

- (a) E. van Lenthe, E.J. Baerends and J.G. Snijders, *J. Chem. Phys.*, 1994, **101**, 9783; (b) E. van Lenthe, R. van Leeuwen, E.J. Baerends and J. G. Snijders, *Int. J. Quantum Chem.*, 1996, **57**, 281;
 (c) E. van Lenthe, E. J. Baerends and J. G. Snijders, *J. Chem. Phys.*, 1993, **99**, 4597.
- 6. E. van Lenthe, J. G. Snijders and E. J. Baerends, J. Chem. Phys., 1996, 105, 6505.
- 7. T. P. Onak, H. L. Landesman, R.E. Williams and I. Shapiro, J. Phys. Chem. 1959, 63, 1533.
- 8. S. K Latypov, F. M. Polyancev, D.G. Yakhvarov and O.G. Syniashin, *Phys. Chem. Chem. Phys.* 2015, **17**, 6976.
- MOLEKEL 4.3, P. Flükiger, H. P. Lüthi, S. Portmann, and J. Weber, Swiss Center for scientific Computing, Manno, Switzerland, 2000, <u>https://ugovaretto.github.io/molekel/</u> Accessed date 26.5.2020.
- 10. K. E. Riley, K.-A., Tran, P. Lane, J. S. Murray and P. Politzer, J. Comput. Sci. 2016, 17, 273.
- 11. G. Knizia, J. Chem. Theory Comput., 2013, 9, 4834.
- 12. TURBOMOLE, Version 7.3, 2018, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2017, TURBOMOLE GmbH, 2007.