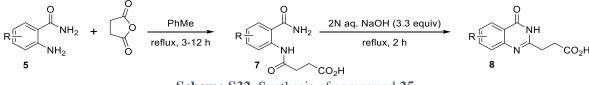
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

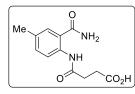
SUPPORTING INFORMATION

Table of Contents


1. Experimental	S2
1.1. General	S2
1.2. Experiments for Scheme 1, thermal conditions.	S2
2. Additional References	S7
3. ¹ H and ¹³ C NMR spectra	S 7
4. ¹ H NMR spectra of crude reaction experiments	S22

1. Experimental

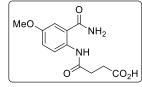
1.1. General


Solvents for solution phase reactions: methanol (MeOH), toluene (PhMe) were purchased in anhydrous grade from Sigma-Aldrich and used without further purification. Ethyl acetate (EtOAc), petroleum ether (PET), dichloromethane (CH₂Cl₂) and diethyl ether (Et₂O) were used as received. Reagents were purchased at the highest commercial quality and used without further purification unless otherwise stated. Evaporations were conducted under reduced pressure at temperatures less than 40 °C unless otherwise noted. Reactions were monitored by analytical thin layer chromatography (TLC) carried out on ALUGRAM Xtra SIL G/UV254, Macherey-Nagel silica gel plates. Compounds were visualized with a UV lamp (λ 254 nm) and stained with a solution of potassium permanganate. NMR spectra of samples in the indicated solvent were recorded on a Bruker Advance 400 or 500 MHz spectrometer and were calibrated using residual solvent as internal reference. The following abbreviations were used to indicate multiplicities: s = singlet, bs = broad singlet, d = doublet, t = triplet, q = quartet, quint = quintuplet, m = multiplet, and AB = AB quartet. Low resolution (ESIMS) and/or high resolution mass spectrometric analyses (HRMS) were obtained by electrospray ionization on a on a Bruker Q-TOF Impact HD apparatus and performed either at the PLATeforme INstrumentale d'Analyses (PLATINA) mass spectrometry facility of the Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP, CNRS-UMR 7285, 86000 Poitiers, France).

1.2. Experiments for Scheme 1, thermal conditions.

Scheme S32. Synthesis of compound 25.

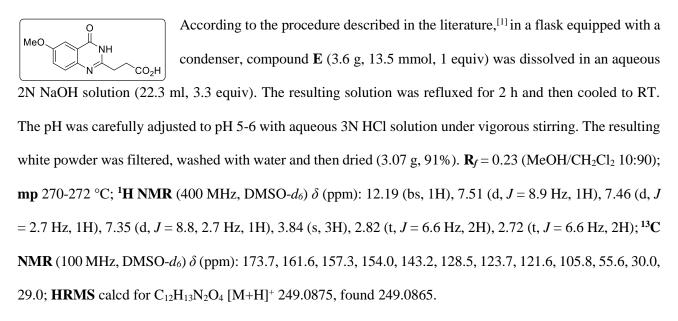
Compound 7b

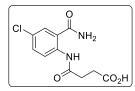

According to the procedure described in the literature,^[1] in a flask equipped with a condenser, 2-amino-5-methylbenzamide (600 mg, 4 mmol, 1 equiv) and succinic anhydride (400 mg, 4 mmol, 1 equiv) were mixed in 5 ml of toluene. The suspension

was vigorously refluxed for 3 h and then cooled to RT. The resulting white powder was filtered, washed with Et₂O and dried (945 mg, 95%). **R**_f = 0.25 (MeOH/CH₂Cl₂ 10:90); **mp** 223-225 °C; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ (ppm): 12.16 (bs, 1H), 11.57 (s, 1H), 8.32 (d, *J* = 8.5 Hz, 1H), 8.21 (s, 1H), 6.67 (s, 1H), 7.62 (d, *J* = 1.5 Hz, 1H), 7.28 (dd, *J* = 8.5, 1.5 Hz, 1H), 2.56-2.53 (m, 4H), 2.28 (s, 3H); ¹³C **NMR** (100 MHz, DMSO-*d*₆) δ (ppm): 173.7, 170.9, 169.7, 137.3, 132.6, 131.3, 128.9, 120.1, 119.5, 32.0, 28.8, 20.4; **HRMS** calcd for C₁₂H₁₅N₂O₄ [M+H]⁺ 251.1032, found 251.1025.

Compound 8b

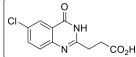
According to the procedure described in the literature,^[1] in a flask equipped with a condenser, compound **E** (874 mg, 3.5 mmol, 1 equiv) was dissolved in an aqueous 2N NaOH solution (6 ml, 3.3 equiv). The resulting solution was refluxed for 1 h 30 and then cooled to RT. The pH was carefully adjusted to pH 5-6 with aqueous 3N HCl solution under vigorous stirring. The resulting white powder was filtered, washed with water and then dried (0.80 g, quant.). $\mathbf{R}_f = 0.25$ (MeOH/CH₂Cl₂ 15:85); **mp** 270-272 °C; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ (ppm): 12.13 (bs, 1H), 7.85 (s, 1H), 7.58 (d, *J* = 7.4 Hz, 1H), 7.46 (d, *J* = 8.2 Hz, 1H), 2.82 (t, *J* = 6.6 Hz, 2H), 2.73 (t, *J* = 6.5 Hz, 2H), 2.40 (s, 3H); ¹³C **NMR** (100 MHz, DMSO-*d*₆) δ (ppm): 173.9, 161.9, 155.6, 146.8, 135.9, 135.9, 126.8, 125.3, 120.7, 30.1, 29.2, 21.0; **HRMS** calcd for C₁₂H₁₃N₂O₃ [M+H]⁺ 233.0926, found 233.0917.


Compound 7c


According to the procedure described in the literature,^[1] in a flask equipped with a condenser, 2-amino-5-methoxybenzamide (2.49 g, 15 mmol, 1 equiv) and succinic anhydride (1.5 g, 15 mmol, 1 equiv) were mixed in 19 ml of toluene. The suspension

was vigorously refluxed for 2 h and then cooled to RT. The resulting light grey powder was filtered, washed with Et₂O and dried (3.92 g, 98%). $\mathbf{R}_f = 0.10$ (MeOH/CH₂Cl₂ 5:95); **mp** 222-224 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 12.16 (bs, 1H), 11.32 (s, 1H), 8.30 (d, *J* = 9.1 Hz, 1H), 8.24 (s, 1H), 7.72 (s, 1H), 7.31 (d, *J* = 2.9 Hz, 1H), 7.08 (dd, *J* = 9.1, 2.9 Hz, 1H), 3.77 (s, 3H), 2.52 (bs, 4H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm): 173.7, 170.4, 169.5, 154.1, 132.8, 121.9, 121.3, 117.7, 113.4, 55.5, 31.9, 28.8; **HRMS** calcd for C₁₂H₁₄N₂NaO₅ [M+Na]⁺ 289.0800, found 289.0789.

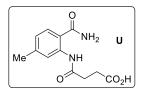
Compound 8c


Compound 7d

According to the procedure described in the literature,^[1] in a flask equipped with a condenser, 2-amino-5-chlorobenzamide (1.7 g, 10 mmol, 1 equiv) and succinic anhydride (1 g, 10 mmol, 1 equiv) were mixed in 12.5 ml of toluene. The suspension

was vigorously refluxed for 3 h and then cooled to RT. The resulting white solid was filtered, washed with Et₂O and dried (2.6 g, 96%). **R**_f = 0.10 (MeOH/CH₂Cl₂ 5:95); **mp** 239-241 °C; ¹**H NMR** (400 MHz, DMSOd₆) δ (ppm): 12.18 (bs, 1H), 11.61 (s, 1H), 8.45 (d, *J* = 9.0 Hz, 1H), 8.36 (s, 1H), 7.86 (d, *J* = 2.4 Hz, 2H), 7.55 (dd, *J* = 9.0, 2.5 Hz, 1H), 2.57-2.53 (m, 4H); ¹³**C NMR** (100 MHz, DMSO-d₆) δ (ppm): 173.6, 170.2, 169.4, 138.5, 131.9, 128.2, 126.1, 121.8, 121.2, 32.1, 28.7; **HRMS** calcd for C₁₁H₁₂ClN₂O₄ [M+H]⁺ 271.0486, found 271.0479.

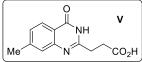
Compound 8d



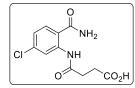
According to the procedure described in the literature,^[1] in a flask equipped with a condenser, compound A (2.48 g, 9.2 mmol, 1 equiv) was dissolved in an aqueous

2N NaOH solution (15 ml, 3.3 equiv). The resulting solution was refluxed for 2 h and then cooled to RT. The pH was carefully adjusted to pH 5-6 with aqueous 3N HCl solution under vigorous stirring. The resulting white powder was filtered, washed with water and then dried (2.31 g, 99.5). $\mathbf{R}_f = 0.30$ (MeOH/CH₂Cl₂ 15:85); **mp** 252-254 °C; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ (ppm): 12.40 (bs, 1H), 8.00 (d, J = 2.5 Hz, 1H), 7.79 (dd, J = 8.7, 2.5 Hz, 1H), 7.59 (d, J = 8.7 Hz, 1H), 2.87-2.83 (m, 2H), 2.75-2.72 (m, 2H); ¹³C NMR (100 MHz, DMSO-

 d_{δ} δ (ppm): 173.6, 160.8, 157.1, 147.4, 134.5, 130.3, 129.1, 124.8, 122.2, 29.8, 29.2; **HRMS** calcd for C₁₁H₁₀ClN₂O₃ [M+H]⁺ 253.0380, found 253.0372.


Compound 7e

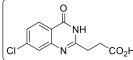
According to the procedure described in the literature,^[1] in a flask equipped with a condenser, 2-amino-4-methylbenzamide (1.5 g, 10 mmol, 1 equiv) and succinic anhydride (1.0 g, 10 mmol, 1 equiv) were mixed in 12.5 ml of toluene. The suspension


was vigorously refluxed for 3 h and then cooled to RT. The resulting yellow powder was filtered, washed with Et₂O and dried (2.3 g, 92%). $\mathbf{R}_f = 0.21$ (MeOH/CH₂Cl₂ 10:90); mp 240-241 °C; ¹H NMR (400 MHz, DMSO d_{6}) δ (ppm): 12.18 (bs, 1H), 11.88 (s, 1H), 8.33 (s, 1H), 8.20 (s, 1H), 7.70 (d, J = 8.0 Hz 1H), 7.64 (s, 1H), 6.91 (dd, J = 8.0, 1.0 Hz, 1H), 2.57-2.52 (m, 4H), 2.31 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 173.8, 170.9, 170.0, 142.5, 140.0, 128.6, 122.9, 120.2, 116.3, 32.2, 28.7, 21.5; **HRMS** calcd for C₁₂H₁₄N₂NaO₄ [M+Na]⁺ 273.0851, found 273.0843.

Compound 8e

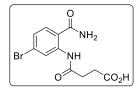
According to the procedure described in the literature,^[1] in a flask equipped with a condenser, compound E (2.2 g, 8.8 mmol, 1 equiv) was dissolved in an aqueous 2N NaOH solution (14.5 ml, 3.3 equiv). The resulting solution was refluxed for 4 h and then cooled to RT. The pH was carefully adjusted to pH 5-6 with aqueous 3N HCl solution under vigorous stirring. The resulting light brown powder was filtered, washed with water and then dried (2.0 g, 97.9%). $\mathbf{R}_f = 0.31$ (MeOH/CH₂Cl₂15:85); **mp** 241-243 °C; ¹**H NMR** (400 MHz, DMSO- d_{δ}) δ (ppm): 12.12 (bs, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.38 (s, 1H), 7.28 (dd, J = 8.1, 1.1 Hz, 1H), 2.83 (t, J = 6.8 Hz, 2H), 2.73 (t, J = 6.4 Hz, 2H), 2.43 (s, 3H); ¹³C NMR $(100 \text{ MHz}, \text{DMSO-}d_6) \delta$ (ppm): 173.9, 162.0, 156.6, 148.9, 145.2, 127.8, 126.6, 125.9, 118.6, 30.1, 29.3, 21.6; **HRMS** calcd for C₁₂H₁₃N₂O₃ [M+H]⁺ 233.0926, found 233.0923.

Compound 7f



According to the procedure described in the literature,^[1] in a flask equipped with a condenser, 2-amino-4-chlorobenzamide (1.7 g, 10 mmol, 1 equiv) and succinic anhydride (1 g, 10 mmol, 1 equiv) were mixed in 12.5 ml of toluene. The suspension

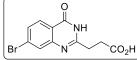
was vigorously refluxed for 3 h and then cooled to RT. The resulting white solid was filtered, washed with Et₂O and dried (2.54 g, 94%). $\mathbf{R}_{f} = 0.10$ (MeOH/CH₂Cl₂ 10:90); mp 232-234 °C; ¹H NMR (400 MHz, DMSO d_0 δ (ppm): 12.22 (bs, 1H), 11.90 (s, 1H), 8.57 (d, J = 2.2 Hz, 1H), 8.35 (s, 1H), 7.84 (s, 1H), 7.83 (d, J = 8.6


Hz, 1H), 7.20 (dd, J = 8.5, 2.2 Hz, 1H), 2.59-2.52 (m, 4H); ¹³**C NMR** (100 MHz, DMSO- d_6) δ (ppm): 173.6, 170.5, 170.0, 141.0, 136.7, 130.4, 122.0, 119.3, 117.7, 32.1, 28.6; **HRMS** calcd for C₁₁H₁₂ClN₂O₄ [M+H]⁺ 271.0486, found 271.0483.

Compound 8f

condenser, compound **M** (2.44 g, 9 mmol, 1 equiv) was dissolved in an aqueous 2N NaOH solution (15 ml, 3.3 equiv). The resulting solution was refluxed for 2 h and then cooled to RT. The pH was carefully adjusted to pH 5-6 with aqueous 3N HCl solution under vigorous stirring. The resulting orange powder was filtered, washed with water and then dried (2.28 g, quant.). $\mathbf{R}_f = 0.50$ (MeOH/CH₂Cl₂ 15:85); **mp** 268-270 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 12.39 (bs, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.61 (s, 1H), 7.49 (d, J = 8.4 Hz, 1H), 2.84 (t, J = 6.8 Hz, 2H), 2.74 (t, J = 6.8 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm): 173.6, 161.2, 158.2, 149.8, 139.0, 127.9, 126.4, 126.0, 119.8, 29.8, 29.2; **HRMS** calcd for C₁₁H₁₀ClN₂O₃ [M+H]⁺ 253.0380, found 253.0374.

Compound 7g

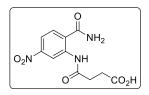


According to the procedure described in the literature,^[1] in a flask equipped with a condenser, 2-amino-4-bromobenzamide (3.67 mmol, 1 equiv) and succinic anhydride (3.67 mmol, 1 equiv) were mixed in 4.6 ml of toluene. The suspension was vigorously

According to the procedure described in the literature,^[1] in a flask equipped with a

refluxed for 12 h and then cooled to RT. The resulting white solid was filtered, washed with Et₂O and dried (1.07 g, 93%). ¹**H NMR** (500 MHz, DMSO-*d*₆) δ (ppm): 12.27 (bs, 1H), 11.87 (s, 1H), 8.72 (s, 1H), 8.37 (s, 1H), 7.87 (s, 1H), 7.76 (d, *J* = 8.2 Hz, 1H), 7.33 (d, *J* = 8.2 Hz, 1H), 2.59-2.51 (m, 4H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm): 174.1, 171.0, 170.5, 141.4, 130.9, 126.0, 125.4, 122.6, 118.5, 32.5, 29.0.

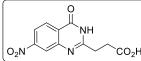
Compound 8g



According to the procedure described in the literature,^[1] in a flask equipped with a condenser, compound 7g (0.5 g, 1.59 mmol, 1 equiv) was dissolved in an aqueous

2N NaOH solution (2.7 ml, 3.3 equiv). The resulting solution was refluxed for 2 h and then cooled to RT. The pH was carefully adjusted to pH 5-6 with aqueous 3N HCl solution under vigorous stirring. The resulting orange powder was filtered, washed with water and then dried (430mg, 91.2%). $\mathbf{R}_f = 0.50$ (MeOH/CH₂Cl₂ 15:85); mp 268-270 °C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 12.39 (bs, 1H), 12.25 (bs, 1H), 7.99 (s, 1H),

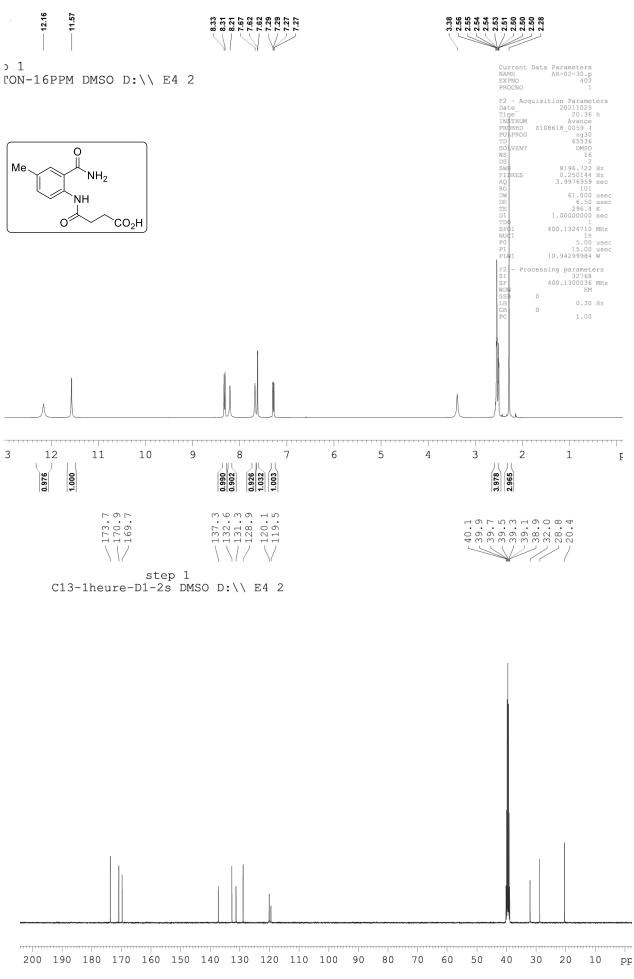
7.77 (s, 1H), 7.63 (s, 1H), 2.85 (m, 2H), 2.74 (m, 2H);; ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm): 174.0, 161.6, 158.4, 150.3, 129.6, 129.5, 128.7, 128.3, 120.5, 30.1, 29.6.

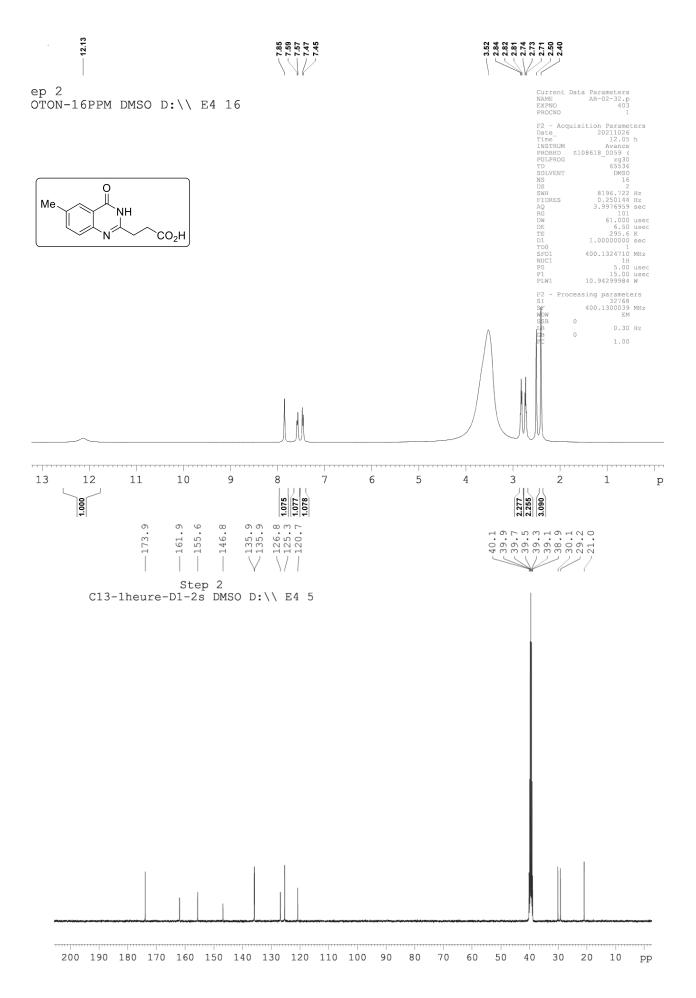

Compound 7h

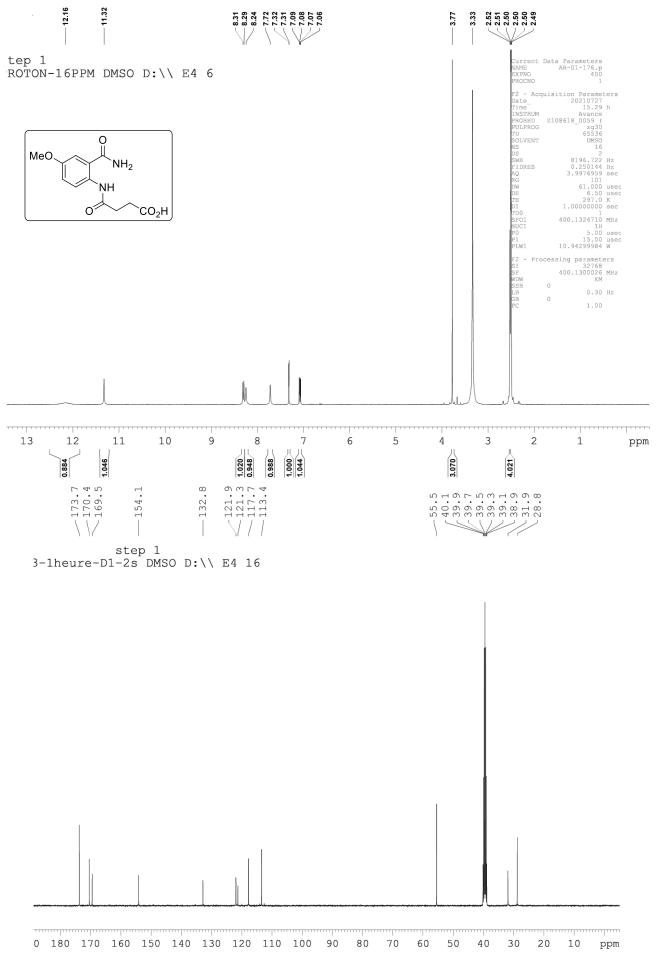
According to the procedure described in the literature,^[1] in a flask equipped with a condenser, 2-amino-4-chlorobenzamide (544 mg, 3 mmol, 1 equiv) and succinic anhydride (300 mg, 3 mmol, 1 equiv) were mixed in 4 ml of toluene. The suspension

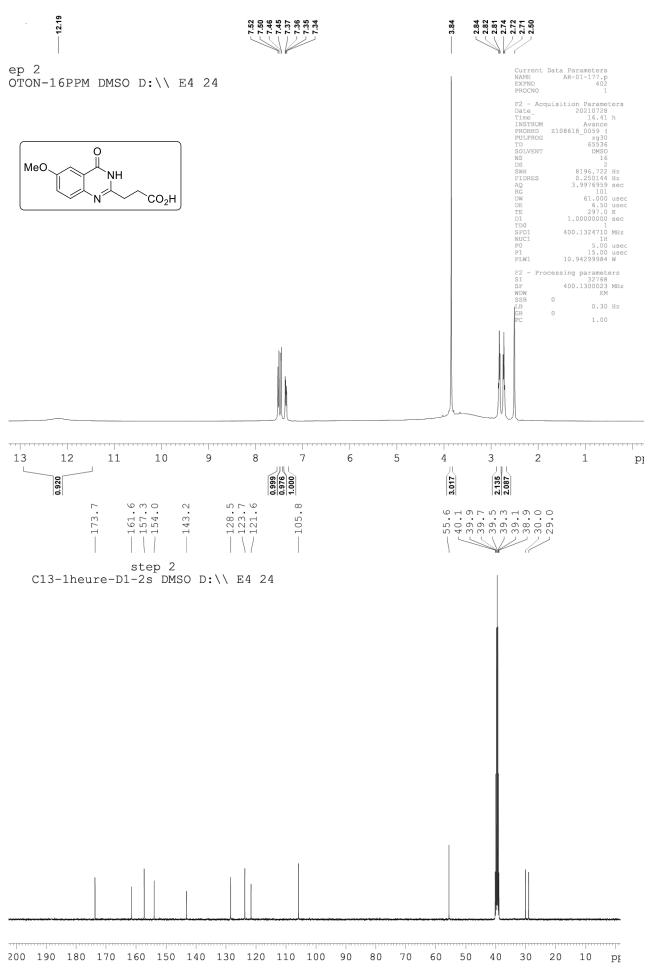
was vigorously refluxed for 2 days and then cooled to RT. The resulting yellow solid was filtered, washed with Et₂O and dried (2.54 g, 94%). **R**_f = 0.13 (MeOH/CH₂Cl₂ 10:90); **mp** 207-209 °C; ¹**H NMR** (400 MHz, DMSO d_{6}) δ (ppm): 12.26 (bs, 1H), 11.61 (s, 1H), 9.28 (d, J = 2.3 Hz, 1H), 8.56 (s, 1H), 8.10 (s, 1H), 8.00 (d, J = 8.7Hz, 1H), 7.95 (dd, J = 8.7, 2.3 Hz, 1H), 2.63 (t, J = 6.4 Hz, 2H), 2.55 (t, J = 6.4 Hz, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 173.6, 170.9, 169.1, 149.1, 140.1, 130.1, 125.1, 116.7, 114.4, 32.1, 28.6; **HRMS** calcd for C₁₁H₁₂N₃O₆ [M+H]⁺ 282.0726, found 282.0723.

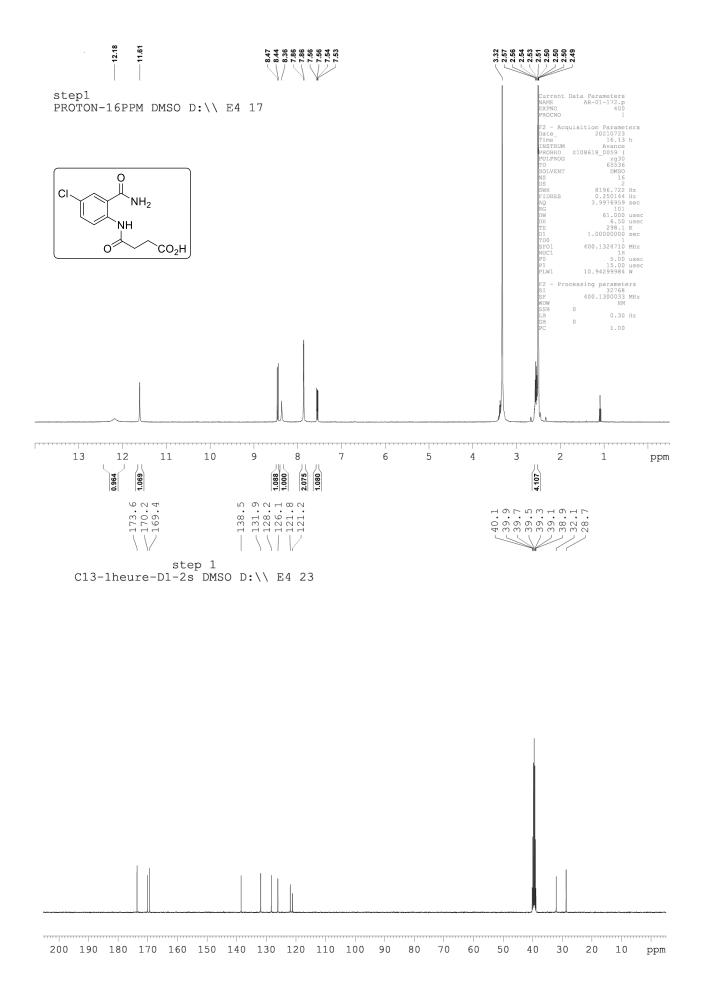
Compound 8h

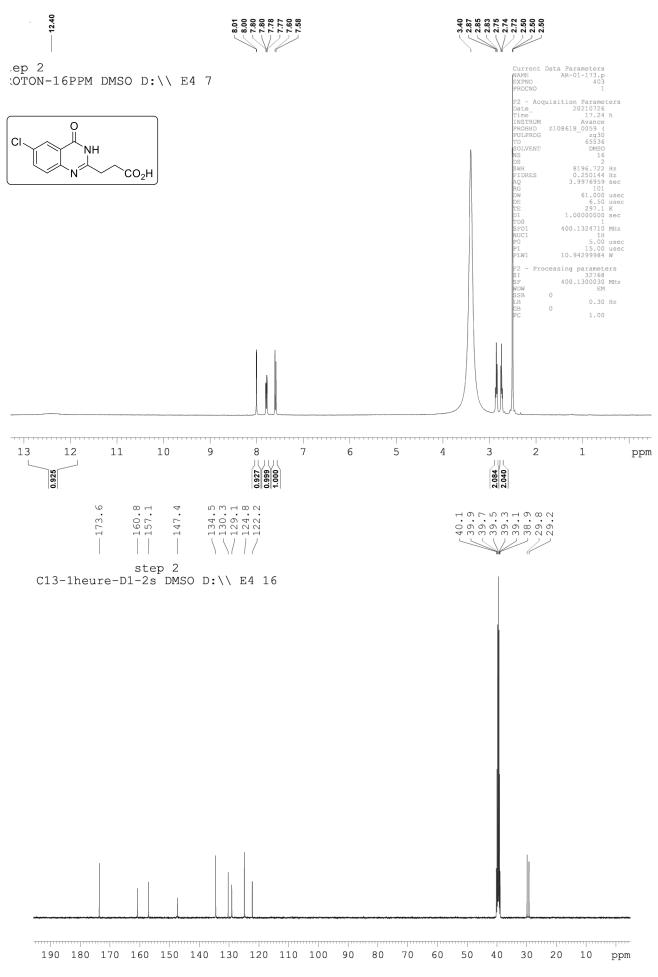


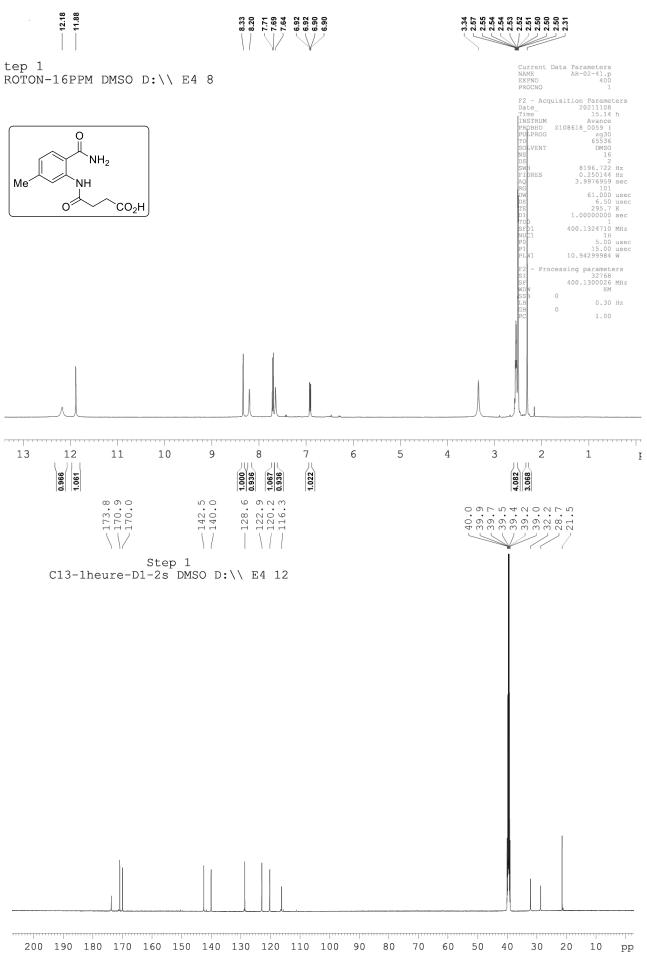

According to the procedure described in the literature,^[1] in a flask equipped with a condenser, compound **Q** (655 mg, 2.3 mmol, 1 equiv) was dissolved in an aqueous CO₂H 2N NaOH solution (4 ml, 3.3 equiv). The resulting solution was refluxed for 5 h and then cooled to RT. The pH was carefully adjusted to pH 5-6 with aqueous 3N HCl solution under vigorous stirring. The resulting orange powder was filtered, washed with water and then dried (527 mg, 86%). $\mathbf{R}_{f} = 0.50$ (MeOH/CH₂Cl₂ 15:85); **mp** 261-263 °C; ¹**H NMR** (400 MHz, DMSO- d_{δ}) δ (ppm): 12.61 (bs, 1H), 12.34 (bs, 1H), 8.24 (d, J = 8.6 Hz, 1H), 8.19 (d, J = 1.6 Hz, 1H), 8.13 (dd, J = 8.6, 1.8 Hz, 1H), 2.88 (t, J = 6.8 Hz, 2H), 2.76 (t, J = 6.7) Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm): 173.8, 160.9, 159.2, 151.3, 149.2, 128.3, 125.3, 121.9, 119.9, 29.9, 29.4; **HRMS** calcd for $C_{11}H_{10}N_3O_5$ [M+H]⁺ 264.0620, found 264.0619.


2. Additional references

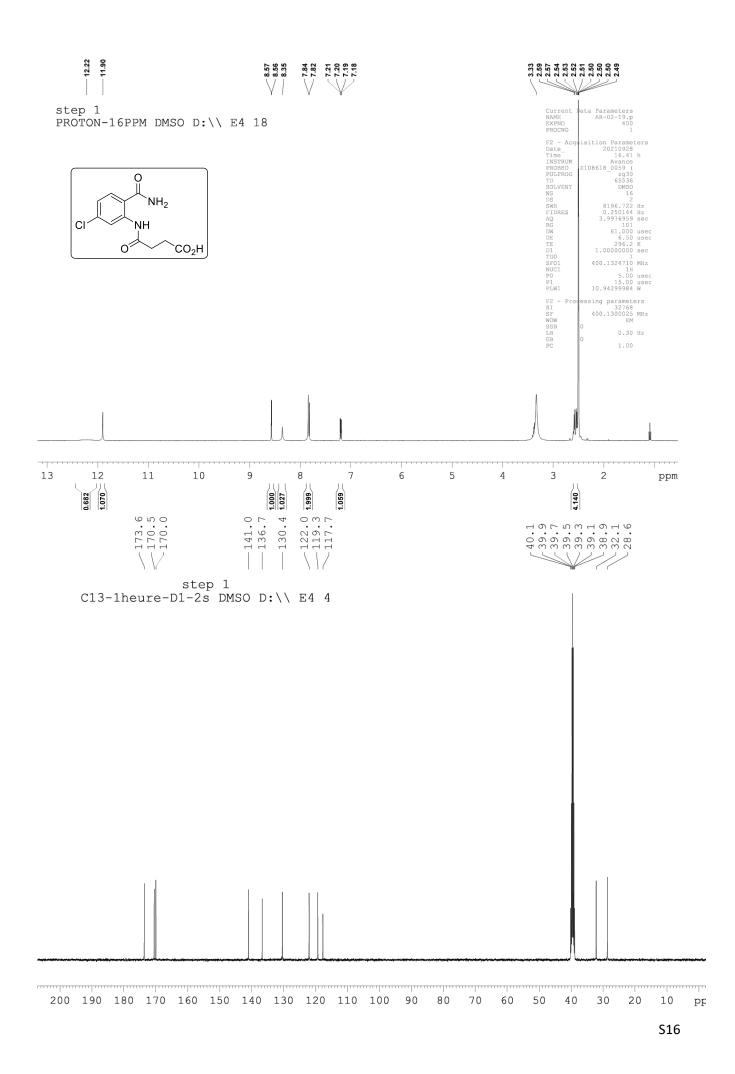

[1] R. Ferreira de Freitas, R. J. Harding, I. Franzoni, M. Ravichandran, M. K. Mann, H. Ouyang, M. Lautens, V. Santhakumar, C. H. Arrowsmith, M. Schapira, J. Med. Chem. 2018, 61, 4517-4527.

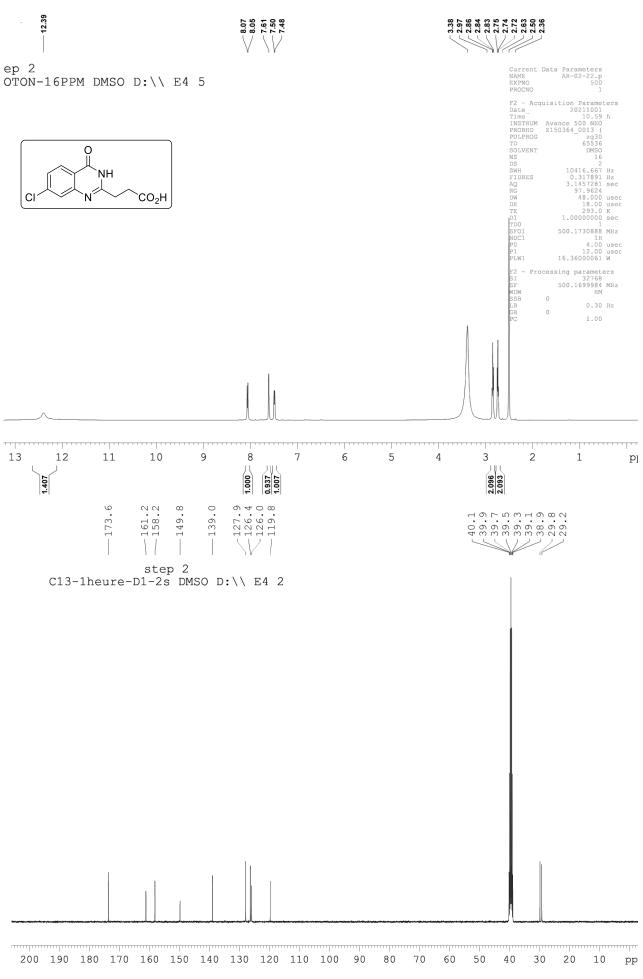

3. ¹H and ¹³C NMR

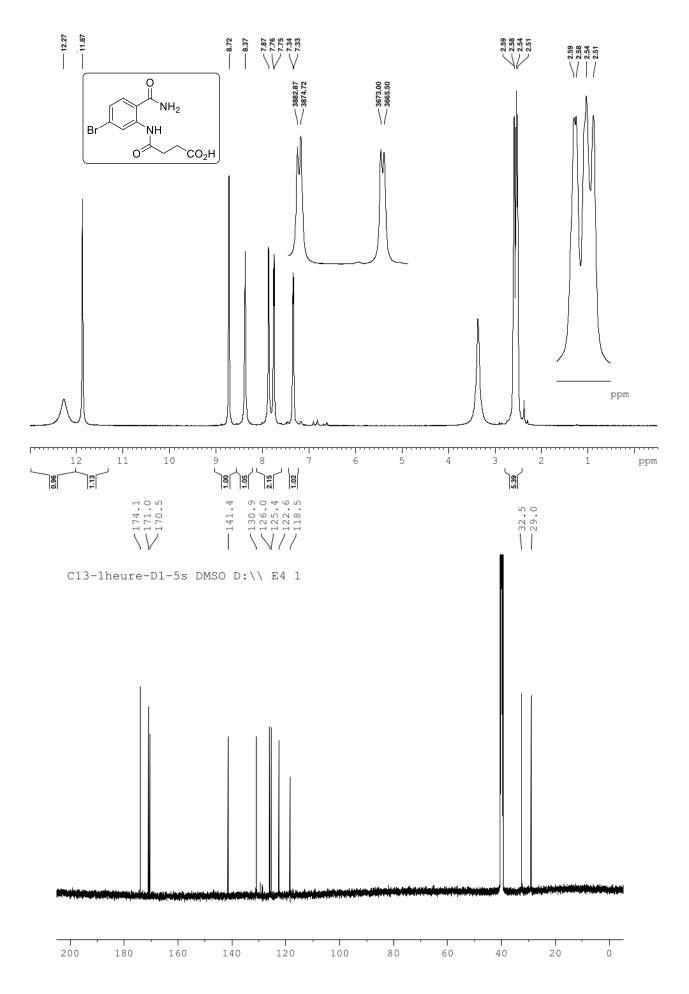


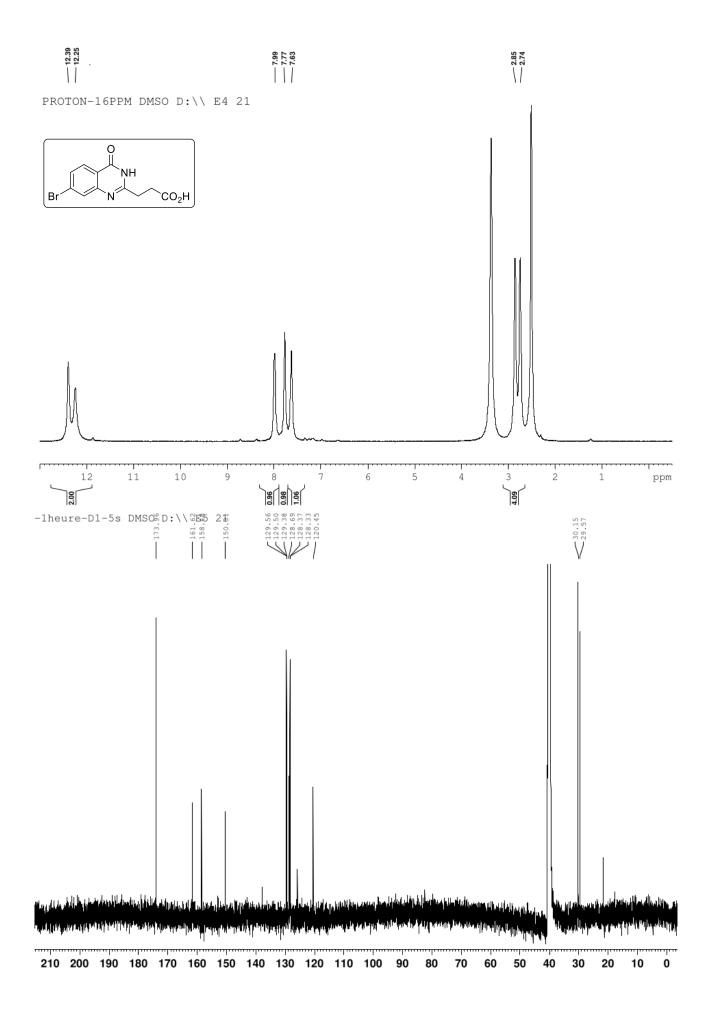


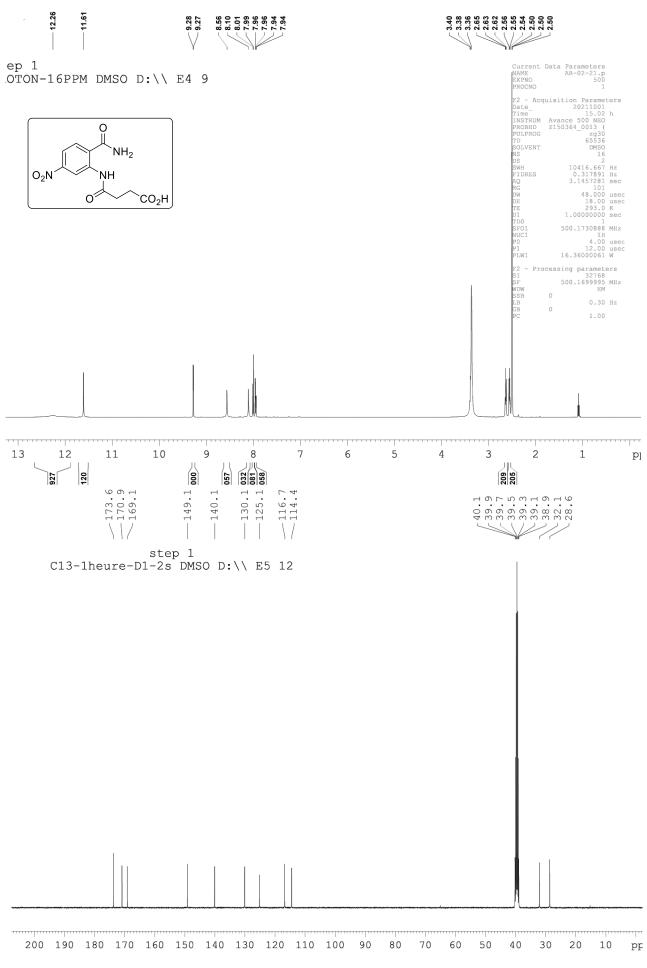


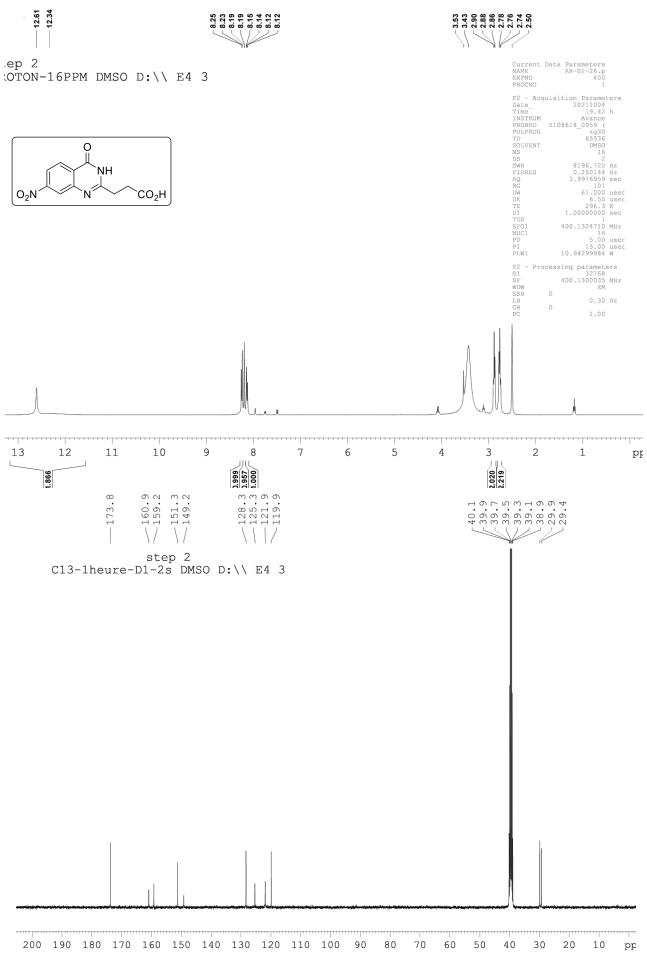












4. ¹H NMR spectra of crude reaction experiments

The figures S1 and S2 show the crude result of experiments performed at different temperatures, powers or times.

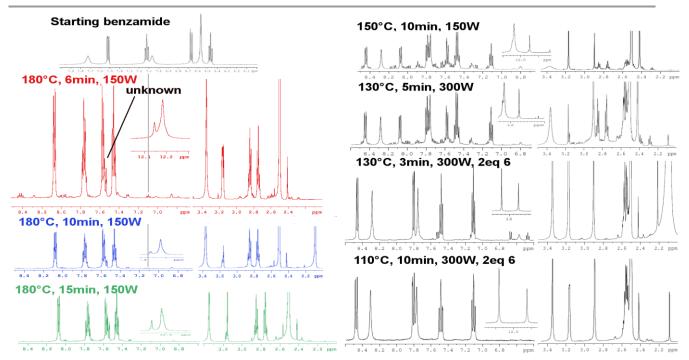
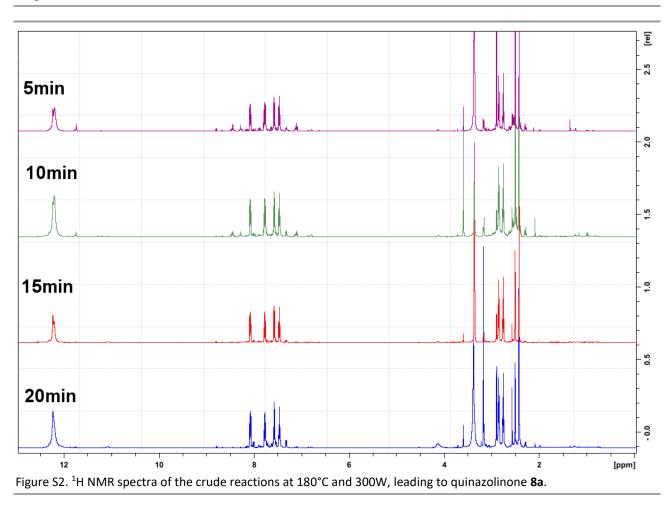



Figure S1. ¹H NMR spectra of the crude reactions during optimizations studies in the 2.0-3.5, 6.4-8.5 and 11.5-12.5 ppm ranges.

