Electronic Supplementary Information

Immobilised-enzyme microreactors for the identification and synthesis of conjugated drug metabolite

Bradley Doyle¹, Leigh A. Madden², Nicole Pamme^{*1,3}, Huw S. Jones^{4*}

¹School of Natural Sciences, University of Hull, HU6 7RX, UK

² Centre for Biomedicine, University of Hull, HU6 7RX, UK

³Department of Materials and Environmental Chemistry, Stockholm University, 106-91 Stockholm, Sweden

⁴Institute of Cancer Therapeutics, University of Bradford, BD7 1DP, UK

*Corresponding author (h.s.jones@bradford.ac.uk)

*Corresponding author (h.s.jones@bradford.ac.uk)

ESI 1 – Microfluidic Chip designs

Figure S1: **AutoCAD drawing of channel designs.** (a) Chip Design A (parallel channel network) and (b) Chip Design B (serpentine channel).

	Chip Design A	Chip Design B
Channel length (mm)	50	667
Channel width (µm)	300	75
Channel etch (µm)	30	30
Retention time (min) at a flow rate of 0.1 μL min ⁻¹ assuming width at half depth	76	18
Surface area to volume ratio (m ⁻¹)	5400	150

 Table S1: Specifications for parallel and serpentine chip designs.

ESI 2 - Experimental Setup

Figure S2: (a) Schematic drawing of the setup featuring the microfluidic chip interfaced to a syringe pump operated under positive pressure via PTFE tubing. A short piece of a silicon capillary was glued onto the microfluidic device. Effluent was collected in Eppendorf tubes. (b) Photograph of the setup.

ESI 3 - Surface Immobilisation

Figure S3: Surface immobilisation of enzymes on glass channels. Following flushing with sodium hydroxide and methanol, 3-(Aminopropyl) trimethoxy silane (5% v/v in ethanol) was introduced and left to incubate for 5 min. This was washed out with methanol and left to dry at 60 °C for an hour. Next glutaraldehyde (5% v/v in 0.1 M phosphate buffer, pH 7.4) was pumped for 1 h at 3 μ L min⁻¹. Finally, the enzyme solutions, *i.e.* SULT1a1 (10 ng mL⁻¹) or UGT1a1 (0.15 mg mL⁻¹) were introduced and left to incubate in the fridge overnight.