Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Anisotropic crystal orientations dependent mechanical properties and fracture mechanisms in zinc-blende ZnTe nanowires

A. S. M. Jannatul Islam^a, Md. Sherajul Islam^{a,*}, Md. Sayed Hasan^a, Kamal Hosen^b, Md. Shahadat Akbar^a, Ashraful G. Bhuiyan^a, and Jeongwon Park^{c,d}

^aDepartment of Electrical and Electronic Engineering, Khulna University of Engineering &Technology, Khulna 9203, Bangladesh

^bDepartment of Electrical and Computer Engineering, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA

^cDepartment of Electrical and Biomedical Engineering, University of Nevada, Reno, NV 89557, USA

^dSchool of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada

*Corresponding author. E-mail: <u>sheraj_kuet@eee.kuet.ac.bd</u> (Md. Sherajul Islam)

Fig. S1. Total energy per atom of (a) [100], (b) [110] and (c) [111]-oriented 18.25 nm² ZB ZnTe NW for different temperatures.

Fig. S2. The Radial distribution function (RDF), g(r) of (a) Zn-Zn (b) Zn-Te and (c) Te-Te pairs of ZnTe NW at three different temperatures.

Fig. S3. The potential energy per atom curves for (a) [100], (b) [110], and (c) [111]-directed ZB ZnTe NWs at 300 K.