Please do not adjust margins.

SUPPORTING INFORMATION

Electrochemical reduction of carbon dioxide to acetic acid on Cu-Au modified boron-doped diamond electrode in a flow-cell system

Millati H. Saprudin,^a Prastika K Jiwanti,^b Deden Saprudin,^c Afiten R. Sanjaya,^a Yulia M. T. A. Putri,^a Yasuaki Einaga,^d and Tribidasari A. Ivandini^{*a}

^aDepartment of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Jakarta 16424, Indonesia.

^bNanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia.

^cDepartment of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Jl. Tanjung Kampus IPB Dramaga, Bogor 16680, Indonesia

^dDepartment of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan

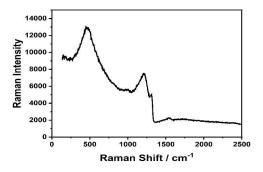
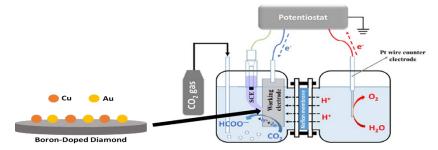
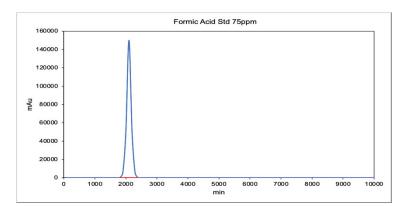
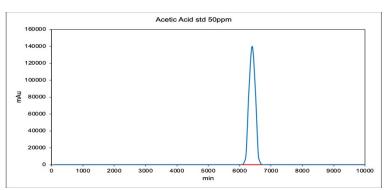
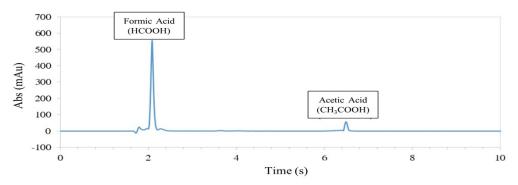


Figure S1. Raman spectra of the unmodified boron-doped diamond film prepared by using MPACVD.


Figure S2. Schematic Diagram of the CO₂ electro-reduction device used in this work

SUPPORTING INFORMATION

Figure S3. The standard chromatogram of acetic acid (75 ppm) and formic acid (50 ppm) with inertsil ODS-3 (5 μ m, GL Science) used as the column and 0.1% HClO₄ as the mobile phase

Figure S4. Chromatogram of CO₂ electroreduction products using CuAu-BDD electrodes at an applied potential of -1.0 V (vs Ag/AgCl) for 1 hour. The column was Inertsil ODS-3 (5 μ m, GL Science) with 0.1% HClO₄ as the mobile phase

Please do not adjust margins.

SUPPORTING INFORMATION

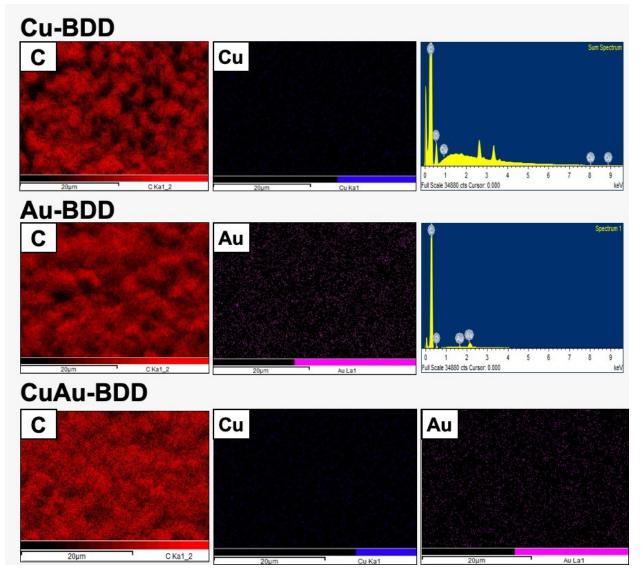


Figure S5. EDS mapping of C, Cu, Au for Cu-, Au-, and CuAu-BDD