Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Support Information

Bulk Synthesis of Conductive Non-Metallic Carbon Nanospheres and a 3D Printed Carrier

Device for Scanning Electron Microscope Calibration

ManLu Wang ¹, JiaCheng Wu ², LiYing Hao ¹, Qiang Wei ^{1*}

(1. Analytical & Testing Center, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology,

Sichuan University, Chengdu 610041, China

2. Department of Dental Technology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,

China)

*Corresponding author: Qiang Wei, E-mail: weiqiang945@scu.edu.cn

Fig. S1. Four SEM images of conductive carbon nanospheres at an accelerating voltage of 15 kV

and a magnification of 8000

Fig. S2. Four SEM images of conductive carbon nanospheres at an accelerating voltage of 25 kV

Fig. S3. Four SEM images of conductive carbon nanospheres at an accelerating voltage of 20 kV

and a magnification of 20000

Fig.S4. Four SEM images of conductive carbon nanospheres at an accelerating voltage of 20 kV

and a magnification of 15000

Fig. S5. Four SEM images of conductive carbon nanospheres at an accelerating voltage of 15 kV

Fig. S6. Four SEM images of conductive carbon nanospheres at an accelerating voltage of 20 kV

and a magnification of 10000

Fig. S7. Four SEM images of conductive carbon nanospheres at an accelerating voltage of 15 kV

and a magnification of 10000

Fig.S8. Four SEM images of conductive carbon nanospheres at an accelerating voltage of 15 kV

Fig. S9. Four SEM images of conductive carbon nanospheres at an accelerating voltage of 25 kV

and a magnification of 8000

Fig. S10. Four SEM images of conductive carbon nanospheres at an accelerating voltage of 25 kV

and a magnification of 15000

Fig. S11. Four SEM images of conductive carbon nanospheres at an accelerating voltage of 25 kV

Fig. S12. Four SEM images of conductive carbon nano-spheres at an accelerating voltage of 20

kV and a magnification of 8000

Variable	Level	Statistic	df	p value
	15	0.952	16	0.523
Voltage (kV)	20	0.944	16	0.405
	25	0.991	16	0.999
	8000	0.949	12	0.616
Enlargement	10000	0.885	12	0.102
factor	15000	0.947	12	0.592
	20000	0.982	12	0.991

Table S1.	Normality to	est by Sha	piro-Wilk t	est for two-way	ANOVA	data
1 4010 011	i tomanej e	est of sha	pno mini		11110 111	aana

Table S2. Levene's test of equality of error variances for two-way ANOVA data ^{a,b}

Dependent variable		Statistic	df1	df2	p value
Microsphere diameter	Based on Mean	1.536	11	36	0.161
	Based on Median	1.236	11	36	0.300
	Based on Median and with adjusted df	1.236	11	19.248	0.329
	Based on trimmed mean	1.528	11	36	0.164

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

- a. Dependent variable: measured diameter
- b. Design: Intercept + Accelerating voltage + Magnification + Voltage * Enlargement factor

Table S3 Two-way ANOVA	for measured diameters	(independent varia	ables: accelerat	ing vol	ltage and
2		\ I		0	0

magnification)					
Source	SS	df	MS	p value	
Accelerating voltage	0.012	2	0.006	0.119	
Magnification	0.017	3	0.006	0.104	
Accelerating voltage *	0.031	C	0.005	0.008	
Magnification	0.051	0	0.005	0.098	
Error	0.094	36	0.003		
Total	2799637.206	48			

Fig. S14. Four SEM images of conductive carbon nanospheres at an accelerating voltage of 25 kV

and a magnification of 15000 (Upper left corner)

Fig. S15. Four SEM images of conductive carbon nanospheres at an accelerating voltage of 25 kV

and a magnification of 15000 (Upper right corner)

Fig. S16. Four SEM images of conductive carbon nanospheres at an accelerating voltage of 25 kV

and a magnification of 15000 (Bottom left corner)

Fig. S17. Four SEM images of conductive carbon nanospheres at an accelerating voltage of 25 kV

and a magnification of 15000 (Bottom right corner)

Fig. S18. Four SEM images of conductive carbon nanospheres at an accelerating voltage of 25 kV and a magnification of 15000 (Central Area)

Table S4. Normality test by Shapiro-Wilk test for one-way ANOVA data of X-axis direction and

Y-axis direction.

Position -		X-axis direc	tion	Y	-axis directio	on
	Statistic	df	P value	Statistic	df	P value
Center	0.895	4	0.406	0.950	4	0.714
Top left	0.945	4	0.683	0.993	4	0.972
Top right	0.993	4	0.972	0.993	4	0.972
Bottom left	0.863	4	0.272	0.993	4	0.972
Bottom left	0.993	4	0.972	0.993	4	0.972

 Table S5. Levene's test of equality of error variances for one-way ANOVA data of X-axis direction and Y-axis direction. ^a

Dependent variable		Statistic	df1	df2	p value
	Based on Mean	0.506	4	15	0.732
Microsphere diameters measured in X-axis direction	Based on Median	0.404	4	15	0.803
	Based on Median and	0.404	4	11.393	0.802
	with adjusted df				
	Based on trimmed mean	0.493	4	15	0.471

	Based on Mean	0.600	4	15	0.668
Microsphere diameters	Based on Median	0.600	4	15	0.668
measured in Y-axis direction	Based on Median and with adjusted df	0.600	4	15.000	0.668
	Based on trimmed mean	0.600	4	15	0.668

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + Position

Table S6. One-way ANOVA of photographing positions for measured diameters in the X-axis

Source	SS	df	MS	p value
Position (X-axis direction)	0.000	4	0.0000575	0.776
Error (X-axis direction)	0.002	15	0.000	
Total (X-axis direction)	1177590.158	20		
Position (Y-axis direction)	0.001	4	0.000	0.252
Error (Y-axis direction)	0.003	15	0.000	
Total (Y-axis direction)	1176901.132	20		

direction and the Y-axis direction

Fig.S19. Residual plots of one-way ANOVA, (a) measured diameters measured in X-axis direction, (b) measured diameters measured in Y-axis direction (standardized residuals against

predicted).