Supporting Information

RSC Advances

Supporting Information

Dispersed MnO_{2} Nanoparticle/Sugarcane Bagasse Derived Carbon Composite as the Anode Material for Lithium-ion Batteries

K. Pongpanyanate ${ }^{\text {a }}$, S. Roddecha*a,c, C. Piyanirund ${ }^{\text {a }}$, T. Phraewphiphat ${ }^{d}$ and P. Hasin ${ }^{\text {b,c }}$
[a] Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Thailand.
${ }^{[b]}$ Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Ministry of Higher Education, Science, Research and Innovation, Faculty of Science, Kasetsart University, Thailand.
${ }^{[c]}$ Kasetsart University Research and Development Institute, Kasetsart University, Thailand.
[d] National Energy Technology Center (ENTEC), 114 Thailand Science Park, Phaholyothin Road, Klong 1, Klongluang, Pathumthani, Thailand 12120.

Contents

Part I. Material Characterization
Part II. Electrochemical performance assessment

Part I. Material Characterization

Figure S1. N_{2} adsorption-desorption isotherms of $\mathrm{BGC}, \mathrm{NBGC}, 5-\mathrm{MnO}_{2} / \mathrm{NBGC}, 10-\mathrm{MnO}_{2} / \mathrm{NBGC}, 40-\mathrm{MnO}_{2} / \mathrm{NBGC}$ and $100-\mathrm{MnO}_{2}$ /NBGC

Figure S2. XPS scans of: a) bagasse-derived carbon material (BGC), b) N-containing bagasse-derived carbon material (NBGC), and c) $\mathrm{MnO}_{2} / \mathrm{NBGC}$ composite with various MnO_{2} loading concentrations

Table S1. Elemental analysis of the bagasse-derived carbon material and the composite with MnO_{2} nanoparticles analyzed by electron dispersive spectroscopy and C H N analyzer

sample	EDS elemental mapping (wt\%)						C H N analyzer (wt\%)		
	C	0	N	Mn	Cl	Ca	C	H	N
BGC	91.84	6.68			1.48		58.56	0.69	0.43
NBGC	84.69	8.67	5.01		0.99		76.01	1.21	0.87
$5-\mathrm{MnO}_{2} / \mathrm{NBGC}$	70.05	18.23	6.15	4.75	0.17	0.65	65.85	1.42	0.77
$10-\mathrm{MnO}_{2} / \mathrm{NBGC}$	65.68	20.28	6.62	6.77	0.19	0.46	60.30	1.20	0.71
$40-\mathrm{MnO}_{2} / \mathrm{NBGC}$	44.24	33.06	1.86	20.39	0.21	0.24	38.82	1.28	0.47
$\underline{100-\mathrm{MnO}_{2} / \mathrm{NBGC}}$	44.54	13.12	1.84	39.25	0.34	0.91	30.07	1.12	0.43

Table S2. Binding energies analyzed by X-ray photoelectron spectroscopy (XPS) of the bagasse-derived carbon material and $\mathrm{MnO}_{2} /$ NBGC composites.

peak position	BGC	NBGC	$5-\mathrm{MnO}_{2} / \mathrm{NBGC}$	position $\mathrm{BE}(\mathrm{eV})$ $10-\mathrm{MnO}_{2}$ /NBGC	$40-\mathrm{MnO}_{2} / \mathrm{NBGC}$	$100-\mathrm{MnO}_{2} / \mathrm{NBGC}$
C1s	285	285	285	285	285	285
01s	533	533	531	530	531	531
Mn2p			644	642	643	643
Mn2p3/2			643	643	642	642
Mn2p1/2			654	654	654	654

Part II. Electrochemical performance assessment

Figure S3. Cyclic voltametric scans (CVs) at various scan rates of: a) BGC , b) NBGC, c) $\left.5-\mathrm{MnO}_{2} / \mathrm{NBGC}, \mathrm{d}\right) 10-\mathrm{MnO}_{2} / \mathrm{NBGC}$, e) $40-\mathrm{MnO}_{2} / \mathrm{NBGC}$, f) $100-\mathrm{MnO}_{2} / \mathrm{NBGC}$

S4. Energy density calculation

Energy density at the electrode level for the full cell including current collector can basically be approximated based on the following formulation ${ }^{1}$.

$\underset{\text { Full-cell }}{$| gravimetric |
| :---: |
| energy density |$}$| SE in material |
| :---: |
| level |$\times \underset{\text { material ratio }}{\text { Active }} \times \frac{\text { Mass loading (cathode) }}{\text { Mass loading (Cathode+Anode) + Areal Weight (Al+Cu)foil }} \times$| Nominal |
| :---: |
| voltage |

In case of the LFP-the proposed 5-MnO2/NBGC full-cell, the gravimetric energy density can be calculated as:

For the LFP-graphite full-cell, the gravimetric energy density can be calculated as:

Note: The nominal voltage of the full cell can be approximately calculated from the difference potential between the nominal voltages achieved from the half-cell testing of each anode and cathode electrode material relative to the Li/Li+ metal. a is the theoretical capacity of LFP cathode based on ref. ${ }^{1} \mathbf{b}$ is the active material ratio within the electrode mixture that is typically prepared from active material of $80 \mathrm{wt} \%$. \mathbf{c} is the approximate mass loading of cathode and anode material based on ref. ${ }^{2}$ \mathbf{d} is the approximate arial weight of the common aluminum foil current collector. \mathbf{e} is the approximate arial weight of the common copper foil current collector. \mathbf{f} is the average plateau voltage from half-cell testing of LFP VS. Li/Li+ based on ref. ${ }^{3} \mathbf{g}$ is the average plateau voltage from half-cell testing of $5 \mathrm{MnO}_{2} / \mathrm{NBGC}$ anode VS. Li/Li+ of this work. \mathbf{h} is the average plateau voltage from half-cell testing of graphite anode VS. Li/Li+ based on ref. ${ }^{4}$

References

Y. Son, H. Cha, C. Jo, A. S. Groombridge, T. Lee, A. Boies, J. Cho and M. De Volder, Materials Today Energy, $2021,21$.
. B. Rowden and N. Garcia-Araez, Energy Reports, 2021, 7, 97-103.
3. H. Sharifi, B. Mosallanejad, M. Mohammadzad, S. M. Hosseini-Hosseinabad and S. Ramakrishna, Ionics, 2021, 28, 213228.
4. S. Li, Q. Meng, M. Fan, K. Yang and G. Tian, Ionics, 2020, 26, 4443-4454.

