Supplementary Information

Geographical heterogeneity and dominant polymer types in microplastic contamination of lentic ecosystems: implications for methodological standardization and future research

Lindys Miranda-Peña,^a Laura Buitrago-Duque,^a Nelson Rangel-Buitrago,^b Adriana Gracia C.,^a Victoria Andrea Arana,^c and Jorge Trilleras*^c

^a Programa de Biología, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia. E-mail: lymiranda@mail.uniatlantico.edu.co; mariaadrianagracia@mail.uniatlantico.edu.co

^b Programa de Física, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia. E-mail: nelsonrangel@mail.uniatlantico.edu.co

^c Programa de Maestría en Ciencias Químicas, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia. E-mail: victoriaarana@mail.uniatlantico.edu.co; jorgetrilleras@mail.uniatlantico.edu.co ; Phone: +57 -3165288489

Table of Contents

Table 1S. List of articles used in the meta-analysis.

Figure S1. Forest plot for PE (Polyethylene) by sampling region. The plot shows the observed results and the estimation of the random effects model for the types of microplastic polymers.

Figure S2. Forest plot for PS (Polystyrene) by sampling region. The plot shows the observed results and the estimation of the random effects model for the types of microplastic polymers.

Figure S3. Forest plot for PP (Polypropylene) by sampling region. The plot shows the observed results and the estimation of the random effects model for the types of microplastic polymers.

Figure S4. Forest plot for PE (Polyethylene) by geographic region. The plot shows the observed results and the estimation of the random effects model for the types of microplastic polymers.

Figure S5. Forest plot for PS (Polystyrene) by geographic region. The plot shows the observed results and the estimation of the random effects model for the types of microplastic polymers.

Figure S6. Forest plot for PP (Polypropylene) by sampling region. The plot shows the observed results and the estimation of the random effects model for the types of microplastic polymers.

Table 1S List of articles used in the meta-analysis.

Title	Lentic system / Country	Reference
A temporal sediment record of microplastics in an urban ake, London, UK	Urban Lakes / London	(Turner et al., 2019)
Comparing microplastics contaminants in (dry and raining) seasons for Ox- Bow Lake in Yenagoa, Nigeria	Ox-Bow Lake / Nigeria	(Oni et al., 2020)
Comparison of the abundance of microplastics between rural and urban areas: A case study from East Dongting Lake	East Dongting Lake / China	(Yin et al., 2020)
Fibers spreading worldwide: Microplastics and other anthropogenic litter in an Arctic freshwater lake	Lake Knudsenheia / Norway	(González-Pleiter et al. 2020)
Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record	Ontario Lake / Canada	(Corcoran et al., 2015)
High levels of pelagic plastic pollution within the surface waters of Lakes Erie and Ontario	Lake Erie, Lake Ontario / Canada	(Mason et al., 2020)
mpact of microplastics on microbial community in sediments of the Huangjinxia Reservoir—water source of a water diversion project in western China	Huangjinxia Nature Reserve / China	(Chaoran Li et al., 2020
Microplastic Abundance and Composition in Western Lake Superior as Determined via Microscopy, Pyr-GC/MS, and FTIR	Western Lake Superior / Canada	(Hendrickson et al., 2018)
Microplastic concentrations, size distribution, and polymer types in the surface waters of a northern European lake	Lake Kallavesi / Finland	(Uurasjärvi et al., 2019
Microplastic pollution in the surface waters of Italian Subalpine Lakes	Lake Iseo, Lake Maggiore, Lake Garda / Italy	(Sighicelli et al., 2018)
Microplastics in Sediment and Surface Water of West Dongting Lake and South Dongting Lake: Abundance, Source and Composition	Dongting Lake / China	(Jiang et al., 2018)
Microplastics in sediments of artificially recharged lagoons: Case study in a Biosphere Reserve	Laguna del altillo Chico, Laguna el longar, Laguna La Albardiosa, Laguna Grande de Quero, Laguna Larga de Villacañas, Laguna Chica de Villafranca de los Caballeros / Spain	(Edo et al., 2020)
Microplastics in surface waters of Dongting Lake and Hong Lake, China	Dongting Lake, Hong Lake / China	(Wang et al., 2018)
Microplastics in Taihu Lake, China	Taihu Lake / China	(Su et al., 2016)

Microplastics in the surface water of Wuliangsuhai Lake, northern China	Wuliangsuhai Lake / China	(Mao et al., 2020)
Occurrence and Spatial Distribution of Microplastics in the surface Waters of Lake Naivasha, Kenya	Lake Naivasha / Kenya	(Migwi et al., 2020)
Occurrence, distribution and size relationships of plastic debris along shores and sediment of northern Lake Victoria	Victoria Lake/ Kenya	(Egessa et al., 2020)
Pelagic plastic pollution within the surface waters of Lake Michigan, USA	Lake Michigan / USA	(Mason et al., 2016)
Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes	Lake Garda / Italy	(Imhof et al., 2016)
Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments	Lake Ontario / Canada	(Ballent et al., 2016)
Thorough Multianalytical Characterization and Quantification of Micro- and Nanoplastics from Bracciano Lake's Sediments	Lake Bracciano / Italy	(Corti et al., 2020)

Author	PE	Total		Proportion	99%-CI	Weight
sampling_region = Surface Uurasjärvi et al 2019 Sighicelli et al 2018 Sighicelli et al 2018 Sighicelli et al 2018 Mason et al 2020 Mao et al 2020 Mason et al 2016 Wang et al 2018 Jiang et al 2018 Hendrickson et al 2018 Su et al 2016 Migwi et al 2020 Mason et al 2020 Oni et al 2020 Oni et al 2020 Random effects model (95%–CI) Heterogeneity: $l^2 = 91\%$, $\chi^2_{15} = 173.85$	20 58 54 62 51 17 33 19 6 21 8 0 3 7 1 0	168 122 114 111 101 89 66 47 47 46 42 22 17 14 10 9 1025		0.48 [0 0.47 [0 0.56 [0 0.50 [0 0.19 [0 0.50 [0 0.40 [0 0.13 [0 0.46 [0 0.19 [0 0.00 [0 0.18 [0 0.50 [0 0.10 [0 0.00 [0	0.06; 0.19] 0.36; 0.59] 0.35; 0.59] 0.44; 0.68] 0.38; 0.63] 0.09; 0.31] 0.34; 0.66] 0.23; 0.59] 0.03; 0.28] 0.02; 0.65] 0.00; 0.12] 0.00; 0.48] 0.17; 0.83] 0.00; 0.28] 0.00; 0.28] 0.00; 0.28] 0.00; 0.28]	3.6% 3.5% 3.5% 3.5% 3.5% 3.4% 3.3% 3.3% 3.3% 3.3% 3.3% 2.9% 2.7% 2.5% 2.4% 51.2%
sampling_region = Littoral Imhof et al 2016 Egessa et al 2020 Jiang et al 2018 Yin et al 2020 Ballent et al 2016 Edo et al 2020 Edo et al 2020 Dni et al 2020 Oni et al 2020 Corti et al 2020 Edo et al 2020	84 62 19 14 28 3 7 13 0 1 5 0 3 1 (<i>p</i> < 0.01)	260 110 99 78 60 35 26 26 10 10 9 5 4 2 734		0.56 [0 0.19 [0 0.18 [0 0.47 [0 0.27 [0 0.50 [0 0.50 [0 0.56 [0 0.56 [0 0.75 [0 0.50 [0	0.25; 0.40] 0.44; 0.68] 0.10; 0.30] 0.08; 0.31] 0.30; 0.63] 0.00; 0.25] 0.00; 0.25] 0.00; 0.25] 0.00; 0.48] 0.13; 0.94] 0.00; 0.47] 0.00; 1.00] 0.00; 1.00] 0.00; 1.00]	3.6% 3.5% 3.4% 3.4% 3.2% 3.1% 2.5% 2.5% 2.4% 1.9% 1.8% 1.2% 39.1%
sampling_region = Deep Corcoran et al 2015 Su et al 2016 Gonzalez–Pleiter et al 2020 Turner et al 2019 Random effects model (95%–CI) Heterogeneity: $l^2 = 92\%$, $\chi_3^2 = 35.32$ (j	26 4 0 0	32 23 5 3 63		0.17 [C 0.00 [C 0.00 [C	0.60; 0.96] 0.02; 0.42] 0.00; 0.47] 0.00; 0.71] 0.00; 0.70]	3.2% 3.0% 1.9% 1.5% 9.7%
Random effects model (95%–CI) Heterogeneity: $l^2 = 89\%$, $\chi^2_{33} = 297.84$	4 (p < 0.01	1822	0 0.2 0.4 0.6 0.8 1 Prevalence	0.28 [0	0.20; 0.36]	100.0%

Figure S1. Forest plot for PE (Polyethylene) by sampling region. The plot shows the observed results and the estimation of the random effects model for the types of microplastic polymers.

Author	PS	Total		Proportion 99%-CI Weight
sampling_region = Littoral Imhof et al 2016 Egessa et al 2020 Jiang et al 2018 Yin et al 2020 Ballent et al 2016 Edo et al 2020 Li et al 2020b Oni et al 2020b Oni et al 2020 Corti et al 2020 Edo et al 2020 Heterogeneity: $l^2 = 80\%$, $\chi^2_{13} = 63.48$ (j	46 0 14 6 9 2 1 8 0 0 0 0 0 0 0 0 0 0 0	260 110 99 78 60 35 26 26 10 10 9 5 4 2 734		0.18[0.12; 0.24]3.8%0.00[0.00; 0.02]3.6%0.14[0.06; 0.24]3.6%0.08[0.02; 0.17]3.6%0.15[0.05; 0.29]3.5%0.06[0.00; 0.21]3.3%0.04[0.00; 0.21]3.1%0.31[0.10; 0.56]3.1%0.00[0.00; 0.25]2.4%0.00[0.00; 0.25]2.4%0.00[0.00; 0.28]2.3%0.00[0.00; 0.47]1.7%0.00[0.00; 0.57]1.5%0.00[0.00; 0.92]1.0%0.05[0.01; 0.10]38.8%
sampling_region = Surface Uurasjärvi et al 2019 Sighicelli et al 2018 Sighicelli et al 2018 Sighicelli et al 2018 Mason et al 2020 Mason et al 2020 Mason et al 2016 Jiang et al 2018 Wang et al 2018 Wang et al 2018 Hendrickson et al 2018 Su et al 2016 Migwi et al 2020 Mason et al 2020 Oni et al 2020 Coni et al 2020 Random effects model (95%–Cl) Heterogeneity: $l^2 = 92\%$, $\chi^2_{15} = 199.71$	2 31 34 18 2 39 0 19 7 4 2 1 0 0 0 0 0 0 0 0 0	168 122 114 111 101 89 66 47 47 46 42 22 17 14 10 9 1025		$\begin{array}{cccccc} 0.01 & [0.00; 0.05] & 3.7\% \\ 0.25 & [0.16; 0.36] & 3.7\% \\ 0.30 & [0.19; 0.41] & 3.7\% \\ 0.16 & [0.08; 0.26] & 3.6\% \\ 0.02 & [0.00; 0.07] & 3.6\% \\ 0.44 & [0.31; 0.58] & 3.6\% \\ 0.44 & [0.31; 0.58] & 3.6\% \\ 0.40 & [0.23; 0.59] & 3.4\% \\ 0.15 & [0.04; 0.31] & 3.4\% \\ 0.09 & [0.01; 0.23] & 3.4\% \\ 0.05 & [0.00; 0.17] & 3.3\% \\ 0.05 & [0.00; 0.17] & 3.3\% \\ 0.05 & [0.00; 0.24] & 3.0\% \\ 0.00 & [0.00; 0.18] & 2.6\% \\ 0.00 & [0.00; 0.25] & 2.4\% \\ 0.00 & [0.00; 0.28] & 2.3\% \\ 0.09 & [0.03; 0.17] & 51.9\% \\ \end{array}$
sampling_region = Deep Corcoran et al 2015 Su et al 2016 Gonzalez–Pleiter et al 2020 Turner et al 2019 Random effects model (95%–CI) Heterogeneity: $l^2 = 84\%$, $\chi_3^2 = 18.97$ (p Random effects model (95%–CI) Heterogeneity: $l^2 = 89\%$, $\chi_{33}^2 = 287.86$		32 23 5 3 63 1822	0 0.2 0.4 0.6 0.8 1 Prevalence	0.00 [0.00; 0.08] 3.2% 0.04 [0.00; 0.23] 3.0% 0.00 [0.00; 0.47] 1.7% 1.00 [0.29; 1.00] 1.3% 0.13 [0.00; 0.70] 9.3% 0.07 [0.03; 0.12] 100.0%

Figure S2. Forest plot for PS (Polystyrene) by sampling region. The plot shows the observed results and the estimation of the random effects model for the types of microplastic polymers.

Author	РР	Total		Proportion	99%-CI	Weight
sampling_region = Littoral Imhof et al 2016 Egessa et al 2020 Jiang et al 2018 Yin et al 2020 Ballent et al 2016 Edo et al 2020 Li et al 2020bb Oni et al 2020 Doni et al 2020 Corti et al 2020 Edo et al 2020 Heterogeneity: $f^2 = 66\%$, $\chi^2_{13} = 38.51$ (p	23 27 10 11 3 12 8 5 0 1 1 0 1 0 < 0.01)	260 110 99 78 60 35 26 26 10 10 9 5 4 2 734		0.25 0.10 0.14 0.05 0.34 0.19 0.00 0.10 0.11 0.00 0.25 0.00	$\begin{matrix} [0.05; 0.14] \\ [0.15; 0.36] \\ [0.04; 0.19] \\ [0.05; 0.26] \\ [0.00; 0.15] \\ [0.15; 0.56] \\ [0.10; 0.56] \\ [0.03; 0.43] \\ [0.00; 0.25] \\ [0.00; 0.48] \\ [0.00; 0.53] \\ [0.00; 0.47] \\ [0.00; 0.92] \\ [0.00; 0.92] \\ [0.07; 0.18] \end{matrix}$	4.4% 4.1% 4.0% 3.9% 3.7% 3.3% 3.0% 3.0% 1.9% 1.8% 1.3% 1.1% 0.7% 38.1%
sampling_region = Surface Uurasjärvi et al 2019 Sighicelli et al 2018 Sighicelli et al 2018 Sighicelli et al 2018 Mason et al 2020 Mason et al 2020 Mason et al 2016 Wang et al 2018 Uang et al 2018 Hendrickson et al 2018 Su et al 2016 Migwi et al 2020 Mason et al 2020 Oni et al 2020 Oni et al 2020 Random effects model (95%–Cl) Heterogeneity: $f^2 = 83\%$, $\chi^2_{15} = 88.4$ ($p < 200$	45 28 7 22 47 28 24 18 8 18 9 1 5 7 1 0	168 122 114 111 101 89 66 47 47 46 42 22 17 14 10 9 1025		0.23 0.06 0.20 0.47 0.31 0.36 0.38 0.17 0.39 0.21 0.05 0.29 0.50 0.10 0.00	$ \begin{bmatrix} 0.18; 0.36 \\ 0.14; 0.33 \\ 0.01; 0.13 \\ 0.11; 0.30 \\ 0.34; 0.59 \\ 0.22; 0.52 \\ 0.22; 0.52 \\ 0.21; 0.57 \\ 0.05; 0.34 \\ 0.25; 0.58 \\ 0.07; 0.40 \\ 0.00; 0.24 \\ 0.05; 0.61 \\ 0.07; 0.40 \\ 0.00; 0.24 \\ 0.00; 0.24 \\ 0.00; 0.24 \\ 0.00; 0.24 \\ 0.00; 0.24 \\ 0.00; 0.24 \\ 0.00; 0.23 \\ 0.00; 0.28 \\ 0.00; 0.23 \\ 0.017; 0.32 \\ \end{bmatrix} $	4.2% 4.1% 4.1% 4.0% 4.0% 3.8% 3.5% 3.5% 3.5% 3.5% 3.4% 2.8% 2.5% 2.3% 1.9% 1.8% 53.7%
sampling_region = Deep Corcoran et al 2015 Su et al 2016 Gonzalez–Pleiter et al 2020 Turner et al 2019 Random effects model (95%–Cl) Heterogeneity: $l^2 = 0\%$, $\chi_3^2 = 1.53$ ($p = 0$ Random effects model (95%–Cl) Heterogeneity: $l^2 = 80\%$, $\chi_{33}^2 = 168.64$ (p		32 23 5 3 63 1822	0 0.2 0.4 0.6 0.8 1 Prevalence	0.13 0.00 0.00 0.11	[0.04; 0.40] [0.00; 0.37] [0.00; 0.47] [0.00; 0.71] [0.03; 0.22] [0.13; 0.23]	3.2% 2.9% 1.3% 0.9% 8.2%

Figure S3. Forest plot for PP (Polypropylene) by sampling region. The plot shows the observed results and the estimation of the random effects model for the types of microplastic polymers.

Author F	PE	Total		Proportion	99%-Cl	Weight
Region = Africa Egessa et al 2020 Migwi et al 2020 Oni et al 2020 Random effects model (95%-Cl) Heterogeneity: $l^2 = 89\%$, $\chi_5^2 = 45.77$ (p < 0.	62 3 0 1 1 0	110 17 10 10 10 9 166		0.18 0.00 0.10 0.10 0.00	[0.44; 0.68] [0.00; 0.48] [0.00; 0.25] [0.00; 0.48] [0.00; 0.48] [0.00; 0.28] [0.00; 0.28]	3.5% 2.9% 2.5% 2.5% 2.5% 2.4% 16.3%
Mason et al 2016 Ballent et al 2016 Hendrickson et al 2018	51 33 28 8 26 7 01)	101 66 60 42 32 14 315		0.50 0.47 0.19 0.81 0.50	[0.38; 0.63] [0.34; 0.66] [0.30; 0.63] [0.60; 0.96] [0.17; 0.83] [0.33; 0.66]	3.5% 3.4% 3.3% 3.2% 2.7% 19.5 %
Mao et al 2020 Yin et al 2020 Wang et al 2018 Jiang et al 2018 Wang et al 2018	19 17 14 19 6 21 13 4 0	99 89 78 47 46 26 23 22 477		0.19 0.18 0.40 0.13 0.46 0.50 0.17 0.00	$\begin{matrix} [0.10; \ 0.30] \\ [0.09; \ 0.31] \\ [0.08; \ 0.31] \\ [0.23; \ 0.59] \\ [0.23; \ 0.28] \\ [0.27; \ 0.65] \\ [0.25; \ 0.75] \\ [0.02; \ 0.42] \\ [0.00; \ 0.12] \\ [0.12; \ 0.35] \end{matrix}$	3.5% 3.5% 3.4% 3.3% 3.3% 3.1% 3.0% 3.0% 29.5%
Uurasjärvi et al 2019 Sighicelli et al 2018 Sighicelli et al 2018	84 20 58 54 62 3 7 5 0 0 3 0 1 0.01)	260 168 122 114 111 35 26 9 5 5 4 3 2 864		0.12 0.48 0.47 0.56 0.09 0.27 0.56 0.00 0.00 0.75 0.00 0.50	$\begin{bmatrix} 0.25; 0.40 \\ [0.06; 0.19] \\ [0.36; 0.59] \\ [0.35; 0.59] \\ [0.44; 0.68] \\ [0.00; 0.25] \\ [0.08; 0.52] \\ [0.13; 0.94] \\ [0.00; 0.47] \\ [0.00; 0.47] \\ [0.00; 0.47] \\ [0.00; 0.71] \\ [0.00; 1.00] \\ [0.015; 0.43] \end{bmatrix}$	3.6% 3.6% 3.5% 3.5% 3.2% 3.1% 2.4% 1.9% 1.9% 1.8% 1.5% 1.2% 34.8%
Random effects model (95%–CI) Heterogeneity: $l^2 = 89\%$, $\chi^2_{33} = 297.84$ (<i>p</i> <		1822	0 0.2 0.4 0.6 0.8 1 Prevalence	0.28	[0.20; 0.36]	100.0%

Figure S4. Forest plot for PE (Polyethylene) by geographic region. The plot shows the observed results and the estimation of the random effects model for the types of microplastic polymers.

Author	PS	Total		Proportion	99%-CI Weight
Region = Africa Egessa et al 2020 Migwi et al 2020 Oni et al 2020 Oni et al 2020 Oni et al 2020 Oni et al 2020 Random effects model (95%–Cl) Heterogeneity: $l^2 = 0\%$, $\chi_5^2 = 1.49$ (p =	0 0 0 0 0 0	110 17 10 10 10 9 166		0.00 0.00 0.00 0.00 0.00	[0.00; 0.02] 3.6% [0.00; 0.15] 2.8% [0.00; 0.25] 2.4% [0.00; 0.25] 2.4% [0.00; 0.25] 2.4% [0.00; 0.28] 2.3% [0.00; 0.00] 15.8%
Region = America Mason et al 2020 Mason et al 2016 Ballent et al 2016 Hendrickson et al 2018 Corcoran et al 2015 Mason et al 2020 Random effects model (95%–CI) Heterogeneity: $J^2 = 72\%$, $\chi_5^2 = 18.14$ (101 66 60 42 32 14 315		0.00 0.15 0.05 0.00 0.00	[0.00; 0.07] 3.6% [0.00; 0.04] 3.5% [0.05; 0.29] 3.5% [0.00; 0.17] 3.3% [0.00; 0.08] 3.2% [0.00; 0.18] 2.6% [0.00; 0.07] 19.8%
Region = Asia Jiang et al 2018 Mao et al 2020 Yin et al 2020 Jiang et al 2018 Wang et al 2018 Li et al 2020b Su et al 2016 Su et al 2016 Random effects model (95%–Cl) Heterogeneity: $I^2 = 87\%$, $\chi_8^2 = 60.45$ (14 39 6 19 7 4 8 1 1 9 <i>p</i> < 0.01)	99 89 78 47 46 26 23 22 477		0.44 0.08 0.40 0.15 0.09 0.31 0.04 0.05	[0.06; 0.24] 3.6% [0.31; 0.58] 3.6% [0.02; 0.17] 3.6% [0.23; 0.59] 3.4% [0.04; 0.31] 3.4% [0.01; 0.23] 3.4% [0.01; 0.23] 3.4% [0.00; 0.23] 3.0% [0.00; 0.24] 3.0% [0.09; 0.28] 30.0%
Region = Europe Imhof et al 2016 Uurasjärvi et al 2019 Sighicelli et al 2018 Sighicelli et al 2018 Sighicelli et al 2018 Edo et al 2020 Edo et al 2020 Gonzalez-Pleiter et al 2020 Corti et al 2020 Edo et al 2020 Edo et al 2020 Turner et al 2019 Edo et al 2020 Random effects model (95%-CI) Heterogeneity: $I^2 = 88\%$, $\chi^2_{12} = 97.86$	46 2 31 34 18 2 1 0 0 0 0 3 0 (p < 0.01)	260 168 122 114 111 35 26 9 5 5 4 3 2 864		0.01 0.25 0.30 0.16 0.06 0.04 0.00 0.00 0.00 0.00 1.00 0.00	[0.12; 0.24] 3.8% [0.00; 0.05] 3.7% [0.16; 0.36] 3.7% [0.19; 0.41] 3.7% [0.08; 0.26] 3.6% [0.00; 0.21] 3.3% [0.00; 0.21] 3.1% [0.00; 0.22] 2.3% [0.00; 0.47] 1.7% [0.00; 0.57] 1.5% [0.29; 1.00] 1.3% [0.00; 0.92] 1.0% [0.01; 0.21] 34.4%
Random effects model (95%–Cl) Heterogeneity: l^2 = 89%, χ^2_{33} = 287.86)	1822	• 0 0.2 0.4 0.6 0.8 1 Prevalence	0.07	[0.03; 0.12] 100.0%

Figure S5. Forest plot for PS (Polystyrene) by geographic region. The plot shows the observed results and the estimation of the random effects model for the types of microplastic polymers.

Author	PP	Total		Proportion	99%-CI Weight
Region = Africa Egessa et al 2020 Migwi et al 2020 Oni et al 2020 Oni et al 2020 Oni et al 2020 Oni et al 2020 Random effects model (95%-CI) Heterogeneity: $l^2 = 53\%$, $\chi_5^2 = 10.7$ (p	27 5 0 1 1 0 = 0.06)	110 17 10 10 10 9 166		0.29 0.00 0.10 0.10 0.00	[0.15; 0.36] 4.1% [0.05; 0.61] 2.5% [0.00; 0.25] 1.9% [0.00; 0.48] 1.9% [0.00; 0.48] 1.9% [0.00; 0.28] 1.8% [0.04; 0.25] 14.3%
Region = America Mason et al 2020 Mason et al 2016 Ballent et al 2016 Hendrickson et al 2018 Corcoran et al 2015 Mason et al 2020 Random effects model (95%–CI) Heterogeneity: J^2 = 89%, χ_5^2 = 46.52 (j	47 24 3 9 6 7 0 < 0.01)	101 66 60 42 32 14 315		0.36 0.05 0.21 0.19 0.50	[0.34; 0.59] 4.0% [0.22; 0.52] 3.8% [0.00; 0.15] 3.7% [0.07; 0.40] 3.4% [0.04; 0.40] 3.2% [0.17; 0.83] 2.3% [0.14; 0.43] 20.5%
Region = Asia Jiang et al 2018 Mao et al 2020 Yin et al 2020 Wang et al 2018 Jiang et al 2018 Wang et al 2018 Li et al 2020bb Su et al 2016 Su et al 2016 Random effects model (95%-Cl) Heterogeneity: $l^2 = 78\%$, $\chi^2_8 = 36.2$ (p	10 28 11 18 8 18 5 3 1 < 0.01)	99 89 78 47 47 46 26 23 22 477		0.31 0.14 0.38 0.17 0.39 0.19 0.13 0.05	[0.04; 0.19] 4.0% [0.19; 0.45] 4.0% [0.05; 0.26] 3.9% [0.21; 0.57] 3.5% [0.05; 0.34] 3.5% [0.21; 0.58] 3.5% [0.03; 0.43] 3.0% [0.00; 0.37] 2.9% [0.00; 0.24] 2.8% [0.13; 0.29] 31.1%
Region = Europe Imhof et al 2016 Uurasjärvi et al 2019 Sighicelli et al 2018 Sighicelli et al 2018 Edo et al 2020 Edo et al 2020 Edo et al 2020 Gonzalez–Pleiter et al 2020 Corti et al 2020 Edo et al 2020 Edo et al 2020 Edo et al 2020 Turner et al 2019 Edo et al 2020 Random effects model (95%–CI) Heterogeneity: $I^2 = 77\%$, $\chi^2_{12} = 53.03$	$23 \\ 45 \\ 28 \\ 7 \\ 22 \\ 12 \\ 8 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	260 168 122 114 111 35 26 9 5 5 4 3 2 864		0.27 0.23 0.06 0.20 0.34 0.31 0.11 0.00 0.00 0.25 0.00 0.00	
Heterogeneity: $l^2 = 77\%$, $\chi^2_{12} = 53.03$ (Random effects model (95%–CI) Heterogeneity: $l^2 = 80\%$, $\chi^2_{33} = 168.64$		1822	0 0.2 0.4 0.6 0.8 1 Prevalence	0.18	[0.13; 0.23] 100.0%

Figure S6. Forest plot for PP (Polypropylene) by sampling region. The plot shows the observed results and the estimation of the random effects model for the types of microplastic polymers.