1 Supplementary file for: 2 Characterization of natural magnetite nanoparticles aggregates from the Peña 3 Colorada iron ore deposit, Mexico: genetic inferences 4 Alva-Valdivia, L. M. (1), Agarwal A. (2), Urrutia-Fucugauchi, J. (1) and Hernández-Cardona, 5 6 A. ⁽³⁾ 7 8(1) Laboratorio de Paleomagnetismo y Geofísica Nuclear, Instituto de Geofísica, Universidad 9 Nacional Autónoma de México, México (DF) 04510 México. 10(2) Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur, 208016, India 11(3) Posgrado en Ciencias de la Tierra, Instituto de Geofísica, Universidad Nacional Autónoma de 12 México, Ciudad de México, 04510, México. 13 14 15

17 Supplementary Table 1. Chemical composition and structural formula of the MNA18 (intergranular mineral; Mt, magnetite; B, berthierine; quartz, Q; calcite, C; and feldspar, Fl).

	PCA - 1	<i>PCA</i> - 2	PCA - 3	
Fe ₂ O ₃	62.299	62.310	61.580	
FeO	27.987	27.994	27.664	
TiO ₂	0.584	0.234	0.224	
MnO	0.212	0.043	0.033	
NiO	0.044		0.015	
Cr ₂ O ₃		0.024	0.024	
CoO	0.118	0.144	0.101	
V_2O_3	0.163	0.160	0.156	
MgO	0.297	0.037	0.088	
CaO	0.005	0.018	0.199	
SiO ₂	0.057	0.042	0.052	
Al ₂ O ₃	0.379	0.399	0.417	
Na ₂ O	0.065	0.102		
K ₂ O		0.014		
Σ	92.210	91.512	90.553	
Fe ₊₃	15.593	15.667	15.690	
Fe ₊₂	7.786	7.821	7.833	
Ti	0.146	0.058	0.057	
Mn	0.559	0.012	0.010	
Ni	0.012		0.004	
Cr		0.008	0.008	
Со	0.032	0.038	0.026	
V	0.043	0.044	0.041	
Mg	0.139	0.018	0.045	
Ca	0.018	0.006	0.071	
Si	0.018	0.014	0.018	
Al	0.099	0.157	0.167	
Na	0.039	0.064		
K		0.004		
Σ	24.484	23.911	23.970	

22 Supplementary Table 2. XRD analyses of MNA after annealing at 650 °C and 750 °C, and

23 650 °C (second run).

Mineral	Concentrated MNA	Annealed at 650°C	Annealed at 750°C	Annealed at 650°C (second round)
Magnetite	х	х		х
Maghemite		х	x	х
Hematite		х	x	х

24

25 Supplementary Table 3. Magnetic susceptibility vs. frequency measurements during 26 laboratory synthesis of magnetite nanoparticles after annealing at 650 °C, 750 °C and 650 °C

- 27 (second run).
- 28

Sample	Magnetite nanoparticles	χLF 10-6 m3 Kg-1	χHF 10-6 m3 Kg-1	χFD 10-6 m3 Kg-1	χFD%
PC7	~ 2-8 nm	3.31	2.88	0.43	13.0
PC7 650 °C	~ 2-8 nm	61.75	57.05	4.70	7.6
PC7 750 °C	~ 2-8 nm	46.91	43.86	3.05	6.5
PC7 650 °C					
(second	~ 2-8 nm	11.20	10.45	0.75	6.7
heating)					

29

30 31

32 Supplementary Figure 1. Reflected light images presenting (a) MNAs annealed at 360 °C

33 with a crust of maghemite (Mg) and magnetite (Mt) cores, and (b) MNAs annealed at 750 $^{\circ}$ C

34 with crust of hematite (He) and maghemite (Mg) cores.

35

37 Supplementary Figure 2. Hysteresis parameter ratio plot (coercivity, Hcr/Hc and
38 magnetization, Mr/Ms) of berthierine concentrate sample after annealing (Day et al, 1977).
39

41 Supplementary Figure 3. IRM results of berthierine concentrate samples after annealing.

