Enhancing MgO Efficiency in CO₂ Capture: Engineered MgO/Mg(OH)₂ Composites with Cl⁻, SO₄²⁻, and PO₄³⁻ Additives

Hasanthi L. Senevirathna^a, Shunnian Wu^a, Cathie Lee^a, Jin-Young Kim^b, Sang Sub Kim^b, Kewu Bai^c, Ping Wu^{*a}

^aEntropic Interface Group, Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372.

^bDepartment of Materials Science and Engineering, Inha University, Incheon 22212, Korea.

^cInstitute of High Performance Computing, Agency for Science, Technology and Research, Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore.

Fig. S1 (a) Magnification of the broader peaks $2\theta = 10^{\circ} - 35^{\circ}$ associated with hydrates in the samples with increasing Cl⁻ percentage. (b) Magnification of peaks $2\theta = 10^{\circ} - 35^{\circ}$ associated with hydrates related to SO_{4}^{2-} in the samples with increasing SO_{4}^{2-} percentage. (c) Magnification of peaks $2\theta = 10^{\circ} - 35^{\circ}$ associated with hydrates related to PO_{4}^{3-} in the samples with increasing PO_{4}^{3-} in the samples with increasing PO_{4}^{3-} in the samples with increasing PO_{4}^{3-} percentage.