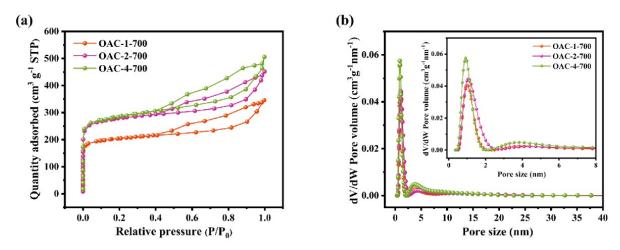
Supporting Information

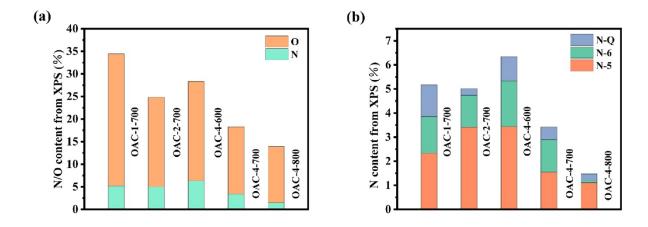
In-situ N, O co-doped porous carbon derived from antibiotic fermentation residues as electrode material for high-performance supercapacitor

Shumeng Qin ^{1,†}, Peiliang Liu ^{1,†}, Jieni Wang^{2,1,†}, Chenxiao Liu^{2,1}, Qizhao Wang¹, Xuanyu Chen¹, Shuqin Zhang^{2,1}, Yijun Tian^{2,1}, Fangfang Zhang^{2,1}, Lin Wang¹, Zhangdong Wei¹, Leichang Cao^{2,1*}, Jinglai Zhang², Shicheng Zhang³

¹ Miami College, Henan University, Kaifeng 475004, China


² College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China

³ Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3),
Department of Environmental Science and Engineering, Fudan University, Shanghai,
200433, China


* Corresponding Author: clch666@henu.edu.cn

† These authors contributed equally to this work.

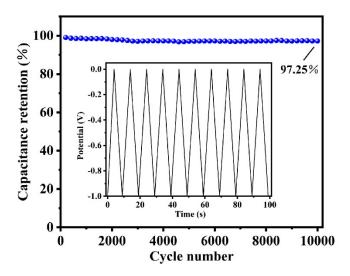

Number of Pages: 6 Number of Figures: 3 Number of Tables: 2

Fig. S1. (a) N_2 adsorption-desorption isotherms and (b) pore size distribution of OAC-1-700, OAC-2-700 and OAC-4-700.

Fig. S2. (a) surface N/O elemental contents and (b) the ratios of different N species determined from the high-resolution XPS N 1s spectra of the different samples.

Fig. S3. The cycle stability of OAC-4-700 based symmetric supercapacitor measures at 10 A g⁻¹ current density (the inner picture are the results of the first 10 cycles).

 Table S1. Elemental analysis of different samples.

Sample	Yield% a	C (wt.%)	H (wt.%)	O (wt.%) b	N (wt.%)
OFR	-	46.37	5.41	39.77	8.45
OPC-600	52.4	61.59	2.32	29.33	6.76
OAC-4-600	51.6	69.59	2.11	21.96	6.34
OAC-1-700	52.1	63.42	2.13	29.28	5.17
OAC-2-700	44.5	72.87	2.31	19.80	5.02
OAC-4-700	46.7	79.47	2.25	14.86	3.42
OAC-4-800	45.2	84.83	1.23	12.47	1.47

^a The yield is determined on a dry basis.
^b The oxygen content is obtained by subtraction.

Table S2. R_s and R_{ct} of different samples.

Sample	$R_{\rm s}$	R _{ct}
OAC-4-600	0.714	0.365
OAC-1-700	0.662	0.159
OAC-2-700	0.690	0.099
OAC-4-700	0.643	0.092
OAC-4-800	0.853	0.094