Supporting Information

Biologically active drimane derivatives isolated from submerged cultures of the woodinhabiting basidiomycete *Dentipellis fragilis*

Nico Mitschke^{1,2,†,*}, Winnie Sum Chemutai^{1,3,†}, Khadija Hassan^{1,3}, Marco Kirchenwitz⁴, Hedda Schrey¹, Luca Gerhards⁵, Harald Kellner⁶, Theresia E. B. Stradal⁴, Josphat C. Matasyoh⁷ and Marc Stadler^{1,3*}

1 Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany; <u>winnie.sumchemutai@helmholtz-hzi.de</u>, <u>khadija.hassan@helmholtz-hzi.de</u>, <u>hedda.schrey@helmholtz-hzi.de</u>,

marc.stadler@helmholtz-hzi.de

2 Current address: Research Group for Marine Geochemistry (ICBM-MPI Bridging Group), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany; <u>nico.mitschke@uni-oldenburg.de</u>

3 Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7,

38106 Braunschweig, Germany

4 Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; <u>marco.kirchenwitz@helmholtz-hzi.de</u>,

theresia.stradal@helmholtz-hzi.de

5 Department of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany; <u>luca.gerhards@uol.de</u>

6 Department of Bio- and Environmental Sciences, Technische Universität Dresden -International Institute Zittau, Markt 23, 02763 Zittau, Germany; <u>harald.kellner@tu-dresden.de</u>

7 Department of Chemistry, Egerton University, P.O. Box 536, 20115, Njoro, Kenya; jmatasyoh@egerton.ac.ke

[†]N.M. and W.C.S. contributed equally to this paper

*Correspondence: nico.mitschke@uni-oldenburg.de, marc.stadler@helmholtz-hzi.de

Table of Contents

 (2) Cytotoxicity assays	(1)	Antimicrobial assays	3
 (3) Neurite outgrowth assays	(2)	Cytotoxicity assays	3
 (4) Analytical data of compound 1	(3)	Neurite outgrowth assays	4
 (5) Analytical data of compound 2	(4)	Analytical data of compound 1	6
 (6) Analytical data of compound 3	(5)	Analytical data of compound 2	11
 (7) Analytical data of compound 421 (8) Analytical data of compound 5	(6)	Analytical data of compound 3	16
(8) Analytical data of compound 5	(7)	Analytical data of compound 4	21
(9) Analytical data of compound 6	(8)	Analytical data of compound 5	30
	(9)	Analytical data of compound 6	35

(1) Antimicrobial assays

Table S1: Antibacterial activities of compounds 1–6.

Microorganism	MIC (µg/mL)						
	1	2	3	4	5	6	Ref.
Bacillus subtilis (DSM 10)	n.i.	ND	n.i.	n.i.	n.i.	ND	4.2ª
Mycolicibacterium smegmatis (ATCC 700084)	n.i.	ND	n.i.	n.i.	n.i.	ND	1.7 ^b
Staphylococcus aureus (DSM 346)	n.i.	ND	66.7	n.i.	n.i.	ND	0.20 ^a
Actinobacter baumannii (DSM 30008)	n.i.	ND	n.i.	n.i.	n.i.	ND	0.26 ^c
Chromobacterium violaceum (DSM 30191)	n.i.	ND	n.i.	n.i.	n.i.	ND	0.83 ^a
Escherichia coli (DSM 1116)	n.i.	ND	n.i.	n.i.	n.i.	ND	3.3ª
Pseudomonas aeruginosa (DSM PA14)	n.i.	ND	n.i.	n.i.	n.i.	ND	0.42 ^d

n.i..: no inhibition, ND: not tested, Ref.: reference (^a: oxytetracycline, 2 mg/mL; ^b: kanamycin 2 mg/mL; ^c: ciprofloxacin, 2.5 mg/mL; ^d: gentamycin, 2 mg/mL).

Table S2:Antifungal activities of compounds 1–6.

Microorganism			MIC	(µg/mL)		
	1	2	3	4	5	6	Ref.
Candida albicans (DSM 1665)	n.i.	ND	n.i.	n.i.	n.i.	n.i.	8.3
Pichia anomala (DSM 6766)	n.i.	ND	n.i.	n.i.	n.i.	n.i.	8.3
Rhodotorula glutinis (DSM 10134)	n.i.	ND	n.i.	n.i.	n.i.	n.i.	2.1
Schizosaccharomyces pombe (DSM 70572)	n.i.	ND	n.i.	n.i.	n.i.	n.i.	4.2
Mucor hiemalis (DSM 2656)	n.i.	ND	66.7	n.i.	n.i.	n.i.	4.2

n.i..: no inhibition, ND: not tested, Ref.: reference (nystatin, 20 mg/mL).

(2) Cytotoxicity assays

Table S3:Cytotoxic activities of compounds 1–6.

Cell line				IC ₅₀ (µM)			
	1	2	3	4	5	6	Ref.
L929 (ACC2)	n.c.	ND	93.5	n.c.	n.c.	n.c.	4.7×10⁻⁵
KB3.1 (ACC158)	n.c.	121.0	21.2	n.c.	n.c.	n.c.	3.3×10⁻⁵

n.c.: no cytotoxicity, ND: not tested, Ref.: reference (epothilon B).

(3) Neurite outgrowth assays

Figure S1: Bar chart displaying the normalized neurite outgrowth of PC-12 cells that were solely treated with either DMSO (5 μ g/mL), compound **1** (5 μ g/mL) or compound **5** (5 μ g/mL) for 24 h. Neurite outgrowths were normalized with respect to the neurite outgrowths detected after 0 h (t_0) and are given in fold changes ± S.E.M. Data originates from three independent experiments.

mean and S.	E.M. used for the illustration	ns in Figure 5 and Figure S	1.
Neu	urite outgrowth assays suppler	mented with NGF (5 ng/mL) as	s displayed in Figure 5
Experiment	DMSO + NGF (5 ng/mL)	compound 1 + NGF	compound 5 + NGF
1	1.09	3.69	4.25
2	1.26	3.64	3.31
3	2.02	3.95	2.87
Mean	1.46	3.76	3.48
S.E.M.	0.29	0.10	0.41
Ν	leurite outgrowth assays not s	supplemented with NGF as dis	played in Figure S1
Experiment	DMSO	compound 1	compound 5
1	0.86	0.66	1.18
2	1.51	1.93	0.97
3	0.79	0.64	0.89
Mean	1.05	1.08	1.01

0.43

80.0

0.23

Table S4: Normalized values of the individual neurite outgrowth assays as well as their mean and S.E.M. used for the illustrations in Figure 5 and Figure S1.

S.E.M.

(4) RT-qPCR assays

1					0	
	DMSO	compound 1		compound 5		
	BDNF/NGF	BDNF	NGF	BDNF	NGF	
Experiment	expression	expression	expression	expression	expression	
1	1.00	3.29	1.20	3.16	1.67	
2	1.00	2.19	7.35	1.30	2.06	
2	1.00	4.25	3.29	3.27	1.09	
Mean	1.00	3.24	3.95	2.58	1.61	
S.E.M.	0.00	0.60	1.81	0.64	0.28	

Table S5:Normalized values for NGF and BDNF mRNA levels as determined by RT-qPCR as well as their respective mean and S.E.M. used for the illustration in Figure 6.

(5) Analytical data of compound 1

Figure S1: HPLC-DAD chromatogram of compound 1.

Figure S2: HR-(+)ESIMS spectrum of compound 1.

Figure S3: ¹H NMR spectrum (500 MHz, CDCl₃, 298 K) of the purified compound **1**. EA: ethyl acetate.

Figure S4: ¹³C NMR spectrum (125 MHz, CDCl₃, 298 K) of the purified compound **1**. EA: ethyl acetate.

Figure S5: ¹H,¹³C DEPT-HSQC spectrum (500 MHz, CDCl₃, 298 K) of the purified compound **1**.

Figure S6: ¹H,¹³C HMBC spectrum (500 MHz, CDCl₃, 298 K) of the purified compound **1**.

Figure S7: ¹H,¹H COSY spectrum (500 MHz, CDCl₃, 298 K) of the purified compound **1**. EA: ethyl acetate.

Figure S8: ¹H,¹H ROESY spectrum (500 MHz, CDCl₃, 298 K) of the purified compound **1**.

Figure S9: UV/Vis spectrum of compound 1 in MeOH.

Figure S10: ECD spectrum of compound 1 in MeOH.

(6) Analytical data of compound 2

Figure S11: HPLC-DAD chromatogram of compound 2.

Figure S12: HR-(+)ESIMS spectrum of compound 2.

Figure S16: ¹H,¹³C HMBC spectrum (500 MHz, CDCl₃, 298 K) of the purified compound 2.

Figure S18: ¹H,¹H ROESY spectrum (500 MHz, CDCl₃, 298 K) of the purified compound 2.

Figure S19: UV/Vis spectrum of compound 2 in MeOH.

Figure S20: ECD spectrum of compound 2 in MeOH

(7) Analytical data of compound 3

Figure S21: HPLC-DAD chromatogram of compound 3.

Figure S22: HR-(+)ESIMS spectrum of compound 3.

Figure S24: ¹³C NMR spectrum (175 MHz, CDCl₃, 298 K) of the purified compound 3.

Figure S25: ${}^{1}H,{}^{13}C$ DEPT-HSQC spectrum (700 MHz, CDCl₃, 298 K) of the purified compound **3**. G: grease.

Figure S26: ¹H,¹³C HMBC spectrum (700 MHz, CDCl₃, 298 K) of the purified compound **3**.

Figure S28: ¹H,¹H ROESY spectrum (700 MHz, CDCl₃, 298 K) of the purified compound **3**.

Figure S29: UV/Vis spectrum of compound 3 in MeOH.

Figure S30: ECD spectrum of compound 3 in MeOH.

(8) Analytical data of compound 4

Figure S31: HPLC-DAD chromatogram of compound 4.

Figure S32: HR-(+)ESIMS spectrum of compound 4.

Figure S34: ¹³C NMR spectrum (175 MHz, CDCl₃, 298 K) of the purified compound 4.

Figure S35: ${}^{1}H,{}^{13}C$ DEPT-HSQC spectrum (700 MHz, CDCl₃, 298 K) of the purified compound 4.

Figure S36: ¹H,¹³C HMBC spectrum (700 MHz, CDCl₃, 298 K) of the purified compound 4.

Figure S38: ¹H,¹H ROESY spectrum (700 MHz, CDCl₃, 298 K) of the purified compound 4.

<u> </u>		Su (mult_lin H=)
	OC	он (muit., J in нz)
1	69.2, CH	3.67 (t, <i>J</i> 2.9 Hz)
2	27.2, CH ₂	1.64 (dq, 14.4, 3.3 Hz, 1H, α)
		1.92 (dddd, 14.4, 14.1, 3.8, 2.6 Hz, 1H, β)
3	36.2, CH ₂	1.19 (dddd, 13.3, 3.8, 2.9, 0.8 Hz, 1H, β)
		1.80 (ddd, 14.1, 13.3, 3.7 Hz, 1H, α)
4	34.2, Cq	
5	39.4, CH	2.18 (dd, 11.2, 6.9 Hz, 1H, α)
6	24.8, CH ₂	2.06 (m, 1H, β)
		2.32 (m, 1H, α)
7	122.0, CH	5.78 (m, 1H)
8	134.9, Cq	
9	50.4, CH	3.29 (m, 1H, α)
10	50.2, Cq	
11	107.0, CH	5.58 (d, 4.3, 1H)
12	73.2, CH ₂	4.33 (m, 2H)
13	20.7, CH₃	0.74 (s, 3H, β)
14	31.6, CH₃	0.93 (s, 3H, α)
15	70.8, CH ₂	3.58 (d, 8.4 Hz, 1H, α)
		3.78 (d, 8.4 Hz, 1H, β)

Table S6:NMR data of compound **4**, recorded at 700MHz (¹H) or 175 MHz (¹³C) in CD₃OD at 298 K. δ_H and δ_C aregiven in ppm.

Figure S39: ¹H NMR spectrum (700 MHz, CD₃OD, 298 K) of the purified compound **4**. W: H_2O , M: methanol, A: acetone.

acetone.

Figure S41: ${}^{1}H,{}^{13}C$ DEPT-HSQC spectrum (700 MHz, CD₃OD, 298 K) of the purified compound 4.

Figure S42: ¹H,¹³C HMBC spectrum (700 MHz, CD₃OD, 298 K) of the purified compound 4.

Figure S44: ¹H,¹H ROESY spectrum (700 MHz, CD₃OD, 298 K) of the purified compound **4**.

Figure S45: UV/Vis spectrum of compound 4 in MeOH.

Figure S46: ECD spectrum of compound 4 in MeOH.

(9) Analytical data of compound 5

Figure S47: HPLC-DAD chromatogram of compound 5.

Figure S48: HR-(+)ESIMS spectrum of compound 5.

Figure S50: ¹³C NMR spectrum (125 MHz, CDCl₃, 298 K) of the purified compound **5**. EA: ethyl acetate, A: acetone.

Figure S51: ${}^{1}H,{}^{13}C$ DEPT-HSQC spectrum (500 MHz, CDCl₃, 298 K) of the purified compound 5.

Figure S52: ¹H,¹³C HMBC spectrum (500 MHz, CDCl₃, 298 K) of the purified compound 5.

Figure S54: ¹H,¹H ROESY spectrum (500 MHz, CDCl₃, 298 K) of the purified compound 5.

Figure S55: UV/Vis spectrum of compound 5 in MeOH.

Figure S56: ECD spectrum of compound 5 in MeOH.

(10) Analytical data of compound 6

Figure S57: HPLC-DAD chromatogram of compound 6.

Figure S58: HR-(+)ESIMS spectrum of compound 6.

Figure S59: ¹H NMR spectrum (700 MHz, $CDCI_3$, 298 K) of the purified compound **6**. W: H₂O, A: acetone, M: methanol, G: grease.

acetone.

Figure S61: ${}^{1}H,{}^{13}C$ DEPT-HSQC spectrum (700 MHz, CDCl₃, 298 K) of the purified compound 6.

Figure S62: ¹H,¹³C HMBC spectrum (700 MHz, CDCl₃, 298 K) of the purified compound 6.

Figure S64: ¹H,¹H ROESY spectrum (500 MHz, CDCl₃, 298 K) of the purified compound 6.

Figure S65: UV/Vis spectrum of compound 6 in MeOH.

Figure S66: ECD spectrum of compound **6** in MeOH.