Intramolecular Cyclization of *N*-Cyano Sulfoximines by N-CN Bond Activation

Ye Ji Seo,^{†a,b} Eunsil Kim,^{†a,c} In Seok Oh,^{†a,c} Ji Young Hyun,^{a,b} Ji Ho Song,^{a,b} Hwan Jung Lim,^{*a,b} Seong Jun Park^{*a,b}

¹Department of Drug Discovery, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea

²Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea

³Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea

Email of corresponding author: Seong Jun Park – sjunpark@krict.re.kr

Supporting information

Contents

General method	3
Experimental section	4
Synthesis of <i>N</i> -Cyano sulfoximines	4
Synthetic procedure for Intramolecular cyclization	5
Synthetic procedure for Mechanism study	7
Synthesis of compound 2b'	8
Unsuccessful attempts for the intramolecular cyclization of compound 1ac	9
NMR spectroscopies of Product	10

Figure S1. ¹ H and ¹³ C NMR spectroscopy of 2a	10
Figure S2. ¹ H and ¹³ C NMR spectroscopy of 2b	11
Figure S3. ¹ H and ¹³ C NMR spectroscopy of 2c	12
Figure S4. ¹ H and ¹³ C NMR spectroscopy of 2d	13
Figure S5. ¹ H and ¹³ C NMR spectroscopy of 2e	14
Figure S6. ¹ H and ¹³ C NMR spectroscopy of 2b'	15
Figure S7. ¹ H and ¹³ C NMR spectroscopy of sulfilimine of [¹³ C]1a	16
Figure S7-1. ¹ H and ¹³ C NMR spectroscopy of [¹³ C]1a	17
Figure S8. ¹ H and ¹³ C NMR spectroscopy of [¹³ C]2a	18
Figure S9. ¹ H and ¹³ C NMR spectroscopy of 1ac	19
Time-resolved NMR spectroscopy	20
LC/MS analyses of reaction intermediates 1ad	21
Chemical Analysis Report for X-ray crystallography	22
1 Sample Information	22
2 Instrument Information	23
2.1 Instrument	23
2.2 Software	23
3 X-ray Crystallographic Results	24
3.1 X-ray Crystallographic Data	24
3.2 X-ray Crystallographic Structure	35
The ADMET predicted data of compound 2c and 2d by the KRICT AI platform	40

General method

Analytical thin-layer chromatography (TLC) was performed on Kieselgel 60 F254 glass plates precoated with a 0.2 mm thickness of silica gel. The TLC plates were visualized by UV (254 nm) Flash chromatography was carried out with Kieselgel 60 (230–400 mesh) on a silica gel. Melting points: Barnstead/Electrothermal 9300, measurements were performed in open glass capillaries. NMR spectra: Bruker AV 300 MHz (¹H NMR: 300 MHz, ¹³C NMR: 75 MHz), AV 400 MHz (¹H NMR: 400 MHz, ¹³C NMR: 100 MHz), AV 500 MHz (¹H NMR: 500 MHz, ¹³C NMR: 125 MHz), and AV2 500 MHz (¹⁹F NMR: 470 MHz), and the spectra were recorded in CDCl₃, MeOD, and DMSO-d6 using TMS as internal standard and are reported in ppm. ¹H NMR data are reported as follows: [s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, td = doublet of triplet, and m = multiplet; coupling constant(s) J is given in Hz; integration, proton assignment]. High-resolution ma s spectra (HRMS): JEOL JMS-700. X-ray crystallography: Bruker SMART APEX II X-ray diffractometer. All solvents were purified using the column filter solvent purification system before use unless otherwise indicated. Reagents were purchased and used without further purification.

Experimental section

Synthesis of N-Cyano sulfoximines

For the preparation of *N*-Cyano sulfoximine **1**, please see our previous publication (*ACS Omega*, **2022**, *7*, 2160-2169).

Synthetic procedure for Intramolecular cyclization

A solution of an sulfoximine **1** (50 mg) was then re-dissolved in 3 mL dry CH_2CI_2 and added dropwise to trifluoroacetic anhydride (6 eq) at 0 °C. After stirring for 16 hours at ambient temperature, the reaction mixture was extracted with EtOAc and washed with brine. The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a silica gel (EtOAc/hexane = 2:1) to give the desired product **2**.

4-benzoyl-1-methyl- $1\lambda^4$ -benzo[*e*][1,2,4]thiadiazin-3(4*H*)-one 1-oxide (**2a**).

Following the general oxidation method, the reaction of *N*-(2-(*N*-cyano-*S*-methylsulfonimidoyl)-phenyl)benzamide **1a** (50 mg, 0.17 mmol) with trifluoroacetic anhydride (0.14 mL, 1.0 mmol) in CH₂Cl₂ (3 mL) gives the desired Thiadiazinone 1-oxide **2a** as a white solid (36 mg, 89% yield). m.p 149-150 °C; ¹H NMR (500 MHz, CDCl₃) : δ 8.00–7.98 (m, 2H), 7.85 (dd, J

= 1.5 Hz, J = 8.0 Hz, 1H), 7.67–7.64 (m, 1H), 7.67–7.57 (m, 1H), 7.52–7.48 (m, 2H), 7.35–7.31 (m, 1H), 7.06–7.04 (m, 1H) 3.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) : δ 171.1, 149.1, 138.3, 136.1, 135.0, 132.6, 130.5, 129.3, 125.2, 124.0, 116.5, 114.0, 46.0; HRMS (EI): calcd for C₁₅H₁₂N₂O₃S [M⁺] 300.0569; found, 300.0563.

4-benzoyl-1-phenyl-1 λ^4 -benzo[*e*][1,2,4]thiadiazin-3(4*H*)-one 1-oxide (**2b**).

Following the general oxidation method, the reaction of *N*-(2-(*N*-cyanophenylsulfonimidoyl)-phenyl)benzamide **1b** (50 mg, 0.14 mmol) with trifluoroacetic anhydride (0.12 mL, 0.83 mmol) in CH₂Cl₂ (3 mL) gives the desired Thiadiazinone 1-oxide **2b** as a Yellow solid (39 mg, 78% yield). m.p 129-130 °C; ¹H NMR (300 MHz, CDCl₃) : δ 8.10–8.04

(m, 4H), 7.78–7.73 (m, 1H), 7.70–7.64 (m, 3H), 7.56–7.47 (m, 3H), 7.44–7.41 (m, 1H), 7.19–7.13 (m, 1H), 7.07 (d, J = 8.6 Hz 1H); ¹³C NMR (100 MHz, DMSO) : δ 167.8, 150.8, 140.2, 139.5, 136.1, 135.0, 133.3, 131.2, 130.4, 129.7, 129.0, 128.6, 126.0, 123.3, 117.1, 113.5.

4-benzoyl-1-methyl- $1\lambda^4$ -pyrido[4,3-*e*][1,2,4]thiadiazin-3(4*H*)-one 1-oxide (**2c**).

Following the general oxidation method, the reaction of *N*-(3-(*N*-cyano-*S*-methylsulfonimidoyl)-pyridin-4-yl)benzamide **1c** (50 mg, 0.17 mmol) with trifluoroacetic anhydride (0.14 mL, 1.0 mmol) in CH₂Cl₂ (3 mL) gives the desired Thiadiazinone 1-oxide **2c** as a white solid (31 mg, 62% yield). m.p 249-250 °C; ¹H NMR (300 MHz, CDCl₃) : δ 9.09 (s, 1H), 8.62 (d, J = 6.1 Hz,

1H), 7.96 (d, J = 7.4 Hz, 2H), 7.70 (t, J = 7.6 Hz, 1H), 7.53 (t, J = 7.7 Hz, 2H), 6.99 (d, J = 6.1 Hz, 1H), 3.67 (s, 3H); ¹³C NMR (100 MHz, DMSO) : δ 170.9, 155.4, 148.4, 148.0, 143.7, 136.0, 132.3, 130.8, 130.0, 111.9, 110.0, 45.0; HRMS (EI): calcd for C₁₄H₁₁N₃O₃S, 301.0521; found, 301.0515.

4-(6-chloronicotinoyl)-1-methyl- $1\lambda^4$ -benzo[*e*][1,2,4]thiadiazin-3(4*H*)-one 1-oxide (**2d**).

Following the general oxidation method, the reaction of 6-chloro-*N*-(2-(*N*-cyano-*S*-methyl-sulfonimidoyl)phenyl)nicotinamide **1d** (50 mg, 0.15 mmol) with trifluoroacetic anhydride (0.13 mL, 0.90 mmol) in CH_2Cl_2 (3 mL) gives the desired Thiadiazinone 1-oxide **2d** as a white solid (44 mg, 88% yield). m.p 121-122 °C; ¹H NMR (300 MHz, CDCl₃) :

δ 8.93 (d, J = 2.5 Hz, 1H), 8.16 (dd, J = 2.5 Hz, J = 8.4 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.66 (t, J = 8.1 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.40 (t, J = 7.7 Hz, 1H), 7.23 (d, J = 7.7 Hz, 1H), 3.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) : δ 169.5, 156.9, 151.4, 149.2, 139.7, 137.7, 136.3, 128.4, 125.2, 124.9, 124.8, 117.0, 115.1, 45.7; HRMS (EI): calcd for C₁₄H₁₀ClN₃O₃S [M⁺] 335.0131; found, 335.0131.

4-(4-methoxybenzoyl)-1-methyl-1 λ^4 -benzo[*e*][1,2,4]thiadiazin-3(4*H*)-one 1-oxide (**2e**).

Following the general oxidation method, the reaction of *N*-(2-(*N*-cyano-*S*-methyl-sulfonimidoyl)phenyl)-4-methoxybenzamide **1e** (50 mg, 0.15 mmol) with trifluoroacetic anhydride (0.13 mL, 0.9 mmol) in CH_2Cl_2 (3 mL) gives the desired Thiadiazinone 1-oxide **2e** as a white solid (33 mg, 66% yield). m.p 262-263 °C; 1H NMR (300 MHz,

CDCl3) : δ 7.96 (d, J = 8.9 Hz, 2H), 7.83 (dd, J = 1.5 Hz, J = 8.0 Hz, 1H), 7.60–7.54 (m, 1H), 7.30 (t, J = 8.2 Hz, 1H), 7.00–6.94 (m, 3H), 3,88 (s, 3H), 3.55 (s, 3H); 13C NMR (100 MHz, CDCl3) : δ 169.9, 165.4 149.0, 138.7, 136.1 133.4, 125.3, 125.1, 123.9, 116.7, 114.8, 113.9, 55.9, 46.3; HRMS (EI): calcd for C₁₆H₁₄N₂O4S [M⁺] 330.0674; found, 330.0671.

Synthetic procedure for Mechanism study

4-benzoyl-1-methyl-1 λ^4 -benzo[*e*][1,2,4]thiadiazin-3(4*H*)-one-3-¹³*C*1-oxide ([¹³C]**2a**)

A solution of *N*-(2-(*N*-(cyano-¹³*C*)-*S*-methylsulfonimidoyl)phenyl)benzamide $[^{13}C]$ **1a** (50 mg, 0.17 mmol) in CH₂Cl₂ (3.0 mL) was added trifluoroacetic anhydride (0.14 mL, 1.0 mmol) at 0 °C. After stirring for 40 mins at ambient temperature, the reaction mixture was extracted with EtOAc and washed with brine. The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a silica

gel (EtOAc/hexane = 2:1) to give the desired compound [¹³C]**2a** as a white solid (42 mg, 83% yield). m.p. 149-150 °C; ¹H NMR (400 MHz, CDCl₃) : δ 7.97 (d, J = 7.8 Hz, 2H), 7.85 (d, J = 7.9 Hz, 1H), 7.64 (t, J = 7.3 Hz, 1H), 7.57 (t, J = 8.6 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.32 (t, J = 8.1 Hz, 1H), 7.02 (d, J = 8.6 Hz, 1H) 3.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) : δ 171.1, 149.0, 138.4 (d, J = 1.6 Hz), 136.1, 135.0, 132.6, 130.5, 129.3, 125.2, 124.0, 116.6 (d, J = 2.7 Hz), 114.0 (d, J = 3.7 Hz), 46.0 (d, J = 2.3 Hz, CH₃); HRMS (EI): calcd for ¹²C₁₄¹³CH₁₂N₂O₃S [M⁺] 301.0602; found, 301.0607.

N-(2-(S-methyl-N-(2,2,2-trifluoroacetyl)sulfonimidoyl)phenyl)benzamide (1ac)

A solution of *N*-(2-(*N*-cyano-*S*-methylsulfonimidoyl)phenyl)benzamide [¹³C]**1a** (50 mg, 0.17 mmol) in CH₂Cl₂ (3.0 mL) was added trifluoroacetic anhydride (0.14 mL, 1.0 mmol) at -20 °C. The reaction mixture was stirred at -20 °C to -10 °C for 40 min and quenched with water. The reaction mixture was extracted with EtOAc and washed with brine. The organic

layer was dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a silica gel (EtOAc/hexane = 1:2) to give the desired compound as a white solid (24.6 mg, 40% yield). m.p. 115-116 °C; ¹H NMR (500 MHz, CDCl₃) : δ 10.05 (s, 1H), 8.61 (d, J = 11.3 Hz, 1H), 7.99-7.93 (m, 3H) 7.82-7.76 (m, 1H), 7.65-7.59 (m, 1H), 7.57-7.50 (m, 2H), 7.43-7.37 (m, 1H), 3.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) : δ 165.4, 164.7, 164.3, 164.0, 163.6, 137.7, 136.4, 133.2, 133.0, 129.1, 128.6, 127.3, 125.0, 124.8, 123.7, 120.1, 117.2, 114.4, 111.5, 43.5; ¹⁹F NMR (376 MHz, CDCl₃) : -75.6; HRMS (EI): calcd for C₁₆H₁₃F₃N₂O₃S [M⁺] 370.0599; found, 370.0607.

Synthesis of compound 2b'

N-(2-(S-methyl-N-(2,2,2-trifluoroacetyl)sulfonimidoyl)phenyl)benzamide (2b').

A solution of 4-benzoyl-1-phenyl- $1\lambda^4$ -benzo[*e*][1,2,4]thiadiazin-3(4*H*)-one 1-oxide **2b** (10.0 mg, 0.028 mmol) in EtOH (1.0 mL) was added 1 N sodium hydroxide (0.5 mL) at rt. The reaction mixture was stirred at rt for overnight and quenched with water and saturated ammonium chloride. The reaction mixture was extracted with EtOAc and washed with brine. The organic layer

was dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a silica gel (EtOAc/hexane = 2:1) to give the desired compound as a white solid (3.0 mg, 41% yield). m.p 205-206 °C; 1H NMR (400 MHz, CDCl3) : δ 11.48 (s, 1H), 8.00-7.97 (m, 2H), 7.70-7.65 (m, 1H) 7.62-7.58 (m, 2H), 7.53-7.49 (m, 1H), 7.37-7.32 (m, 2H), 7.09-7.05 (m, 1H); 13C NMR (100 MHz, CDCl3) : δ 153.9, 139.6, 139.3, 135.4, 134.3, 129.5, 128.4, 125.5, 123.4, 117.8, 113.5; HRMS (El): calcd for C₈H₈N₂O₂S [M⁺] 196.0306; found, 196.0298.

Unsuccessful attempts for the intramolecular cyclization of compound **1ac**

$H_{3}C-S=N$ $H_{$	Reagent ───────── RT, 16 h	$H_3C \rightarrow S^{(N)} \rightarrow N$
0		Ő

Entry	Reagent	Solvent	Yield, %
1	K ₂ CO ₃	CH_2CI_2	_a
2	K ₂ CO ₃	MeOH	_a
3	K ₂ CO ₃	DMF	_a
4	NaH	DMF	_a
5	Sodium trifluoroacetate	CH_2CI_2	_a
6	2,2,2-trifluoroacetyl isocyanate	CH_2CI_2	_a
7	Trifluoroacetic anhydride	CH_2CI_2	_a
8	PIDA, DMF	DMF	_a
9	PIFA, DMF	DMF	_a
10	HCI in dioxane (4N)	CH ₂ Cl ₂	_a
11	2,2,2-trifluoroacetic acid	CH ₂ Cl ₂	_a

^aNo reaction

NMR spectroscopies of Product

Figure S2. ¹H and ¹³C NMR spectroscopy of 2b

Figure S3. ¹H and ¹³C NMR spectroscopy of 2c

Figure S4. ¹H and ¹³C NMR spectroscopy of 2d

Figure S5. ¹H and ¹³C NMR spectroscopy of 2e

.....

. 0

Figure S7. ¹H and ¹³C NMR spectroscopy of sulfilimine of [¹³C]1a

Figure S7-1. ¹H and ¹³C NMR spectroscopy of [¹³C]1a

Figure S8. ¹H and ¹³C NMR spectroscopy of [¹³C]2a

Figure S9. ¹H and ¹³C NMR spectroscopy of 1ac

Time-resolved NMR spectroscopy

ppm (3.60 ~ 3.36)

LC/MS analyses of reaction intermediates 1ad.

To a stirred solution of **1a** (50 mg, 1 equiv.) in CH₂Cl₂ (3 mL) trifluoroacetic anhydride (TFAA, 52.6 mg, 1.5 equiv.) was added at 0 °C. After stirring for 1 h at room temperature, the small portion of reaction mixture (3 μ L) was aliquoted and diluted with HPLC grade CH₂Cl₂ (3 mL). LC/MS analysis of reaction intermediates was performed under gradient of 5–100% CH₃CN (0.1% formic acid) in water (0.1% formic acid) over 8 min.

Chemical Analysis Report for X-ray crystallography

1 Sample Information

Sample name	'OIS-S-2021-152'
Empirical formula Formula weight	C ₁₃ H ₁₀ N ₂ O ₂ S 258.29
Crystal color Crystal size	silver 0.240 x 0.200 x 0.180 mm ³
Crystal shape	block
Crystal image	

2 Instrument Information

2.1 Instrument

Instrument and model	Bruker SMART APEX-II
Source	Μο Κα (λ= 0.71073Å)
Operation voltage / current	50kV/30mA
Monochromator	Graphite crystal
Detector	Charge-Coupled Device (CCD)
Exposure time	10 sec/picture
Operating temperature	Low Temperature 100(1) K
Theta range for data collection	2.530 to 30.507
Total data collection time	14hr

2.2 Software

Molecular graphics	ХР
Refine structure	SHELXL-2018/3 (Sheldrick, 2018)
Solve structure	SHELXT 2018/2 (Sheldrick, 2018)
Absorption correction	SADABS-2016/2
Data reduction	Bruker SAINT
Cell refinement	Bruker SAINT
Data collection	Bruker APEX II

3 X-ray Crystallographic Results

3.1 X-ray Crystallographic Data

3.1.1 Crystal data and structure refinement for 'OIS-S-2021-152'.

Identification code	20220501LT_0m	
Empirical formula	C13 H10 N2 O2 S	
Formula weight	258.29	
Temperature	100(1) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pna21	
Unit cell dimensions	a = 8.3198(2) Å	$\alpha = 90^{\circ}$
	b = 9.8246(2) Å	β= 90°
	c = 14.0426(3) Å	$\gamma=90^\circ$
Volume	1147.82(4) Å ³	
Z	4	
Density (calculated)	1.495 Mg/m ³	
Absorption coefficient	0.276 mm ⁻¹	
F(000)	536	
Crystal size	0.240 x 0.200 x 0.180 mm ³	
Theta range for data collection	2.530 to 30.507°	
Index ranges	-11<=h<=9, -13<=k<=13, -19<=l<=18	
Reflections collected	19508	
Independent reflections	3293 [R(int) = 0.0227]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.95 and 0.87	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3293 / 1 / 163	
Goodness-of-fit on F ²	1.034	
Final R indices [I>2sigma(I)]	R1 = 0.0287, wR2 = 0.0777	
R indices (all data)	R1 = 0.0293, wR2 = 0.0780	
Absolute structure parameter	-0.003(15)	

Extinction coefficient

Largest diff. peak and hole

n/a 0.389 and -0.249 e.Å⁻³

3.1.2 Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for 'OIS-S-2021-152'.

	X	у	Z	U(eq)
S(1)	1959(1)	4599(1)	4624(1)	13(1)
O(1)	1024(2)	5821(1)	4458(1)	18(1)
O(2)	2603(2)	2396(2)	2527(1)	20(1)
N(1)	1807(2)	3437(2)	3886(1)	18(1)
N(2)	4419(2)	3788(2)	3231(1)	16(1)
C(1)	2926(2)	3181(2)	3185(1)	15(1)
C(2)	4973(2)	4599(2)	3972(1)	14(1)
C(3)	6575(2)	5051(2)	3978(2)	18(1)
C(4)	7125(2)	5860(2)	4713(2)	19(1)
C(5)	6120(2)	6246(2)	5470(2)	19(1)
C(6)	4537(2)	5837(2)	5467(1)	17(1)
C(7)	3973(2)	5017(2)	4717(1)	14(1)
C(8)	1346(2)	3905(2)	5717(1)	15(1)
C(9)	1644(3)	2542(2)	5927(2)	20(1)
C(10)	1175(3)	2045(2)	6812(2)	24(1)
C(11)	441(3)	2900(2)	7471(2)	24(1)
C(12)	167(3)	4260(2)	7252(2)	23(1)
C(13)	610(2)	4776(2)	6372(2)	19(1)

U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

S(1)-O(1)	1.4490(14)
S(1)-N(1)	1.5470(18)
S(1)-C(7)	1.7298(17)
S(1)-C(8)	1.7552(19)
O(2)-C(1)	1.233(2)
N(1)-C(1)	1.378(2)
N(2)-C(1)	1.379(2)
N(2)-C(2)	1.389(2)
N(2)-H(2)	0.8800
C(2)-C(7)	1.398(3)
C(2)-C(3)	1.405(3)
C(3)-C(4)	1.380(3)
C(3)-H(3)	0.9500
C(4)-C(5)	1.405(3)
C(4)-H(4)	0.9500
C(5)-C(6)	1.377(3)
C(5)-H(5)	0.9500
C(6)-C(7)	1.407(3)
C(6)-H(6)	0.9500
C(8)-C(9)	1.393(3)
C(8)-C(13)	1.398(3)
C(9)-C(10)	1.391(3)
C(9)-H(9)	0.9500
C(10)-C(11)	1.392(3)
C(10)-H(10)	0.9500
C(11)-C(12)	1.390(3)
C(11)-H(11)	0.9500
C(12)-C(13)	1.386(3)
C(12)-H(12)	0.9500
C(13)-H(13)	0.9500

3.1.3 Bond lengths [Å] and angles [°] for 'OIS-S-2021-152'.

O(1)-S(1)-N(1)	117.39(9)
O(1)-S(1)-C(7)	109.58(8)
N(1)-S(1)-C(7)	107.73(9)
O(1)-S(1)-C(8)	107.87(9)
N(1)-S(1)-C(8)	105.97(9)
C(7)-S(1)-C(8)	107.93(9)
C(1)-N(1)-S(1)	123.92(14)
C(1)-N(2)-C(2)	125.55(16)
C(1)-N(2)-H(2)	117.2
C(2)-N(2)-H(2)	117.2
O(2)-C(1)-N(1)	120.16(17)
O(2)-C(1)-N(2)	120.07(17)
N(1)-C(1)-N(2)	119.76(17)
N(2)-C(2)-C(7)	122.08(17)
N(2)-C(2)-C(3)	120.06(17)
C(7)-C(2)-C(3)	117.84(17)
C(4)-C(3)-C(2)	120.10(18)
C(4)-C(3)-H(3)	120.0
C(2)-C(3)-H(3)	120.0
C(3)-C(4)-C(5)	121.59(17)
C(3)-C(4)-H(4)	119.2
C(5)-C(4)-H(4)	119.2
C(6)-C(5)-C(4)	119.21(18)
C(6)-C(5)-H(5)	120.4
C(4)-C(5)-H(5)	120.4
C(5)-C(6)-C(7)	119.23(18)
C(5)-C(6)-H(6)	120.4
C(7)-C(6)-H(6)	120.4
C(2)-C(7)-C(6)	122.00(16)
C(2)-C(7)-S(1)	116.78(14)
C(6)-C(7)-S(1)	121.01(14)
C(9)-C(8)-C(13)	121.83(17)
C(9)-C(8)-S(1)	120.46(15)

C(13)-C(8)-S(1)	117.67(15)
C(10)-C(9)-C(8)	118.45(19)
С(10)-С(9)-Н(9)	120.8
C(8)-C(9)-H(9)	120.8
C(9)-C(10)-C(11)	120.4(2)
C(9)-C(10)-H(10)	119.8
C(11)-C(10)-H(10)	119.8
C(12)-C(11)-C(10)	120.3(2)
C(12)-C(11)-H(11)	119.8
C(10)-C(11)-H(11)	119.8
C(13)-C(12)-C(11)	120.4(2)
С(13)-С(12)-Н(12)	119.8
C(11)-C(12)-H(12)	119.8
C(12)-C(13)-C(8)	118.61(19)
С(12)-С(13)-Н(13)	120.7
C(8)-C(13)-H(13)	120.7

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	13(1)	16(1)	11(1)	-1(1)	0(1)	0(1)
O(1)	16(1)	20(1)	19(1)	1(1)	-1(1)	3(1)
O(2)	27(1)	19(1)	13(1)	-4(1)	2(1)	-4(1)
N(1)	17(1)	22(1)	15(1)	-4(1)	0(1)	-2(1)
N(2)	17(1)	18(1)	13(1)	-2(1)	2(1)	1(1)
C(1)	19(1)	13(1)	12(1)	2(1)	0(1)	0(1)
C(2)	16(1)	11(1)	14(1)	1(1)	0(1)	2(1)
C(3)	15(1)	18(1)	21(1)	1(1)	2(1)	0(1)
C(4)	15(1)	18(1)	25(1)	1(1)	-1(1)	-2(1)
C(5)	20(1)	18(1)	20(1)	-1(1)	-3(1)	-1(1)
C(6)	20(1)	16(1)	16(1)	-1(1)	-1(1)	0(1)
C(7)	12(1)	16(1)	13(1)	2(1)	0(1)	-1(1)
C(8)	14(1)	18(1)	13(1)	0(1)	2(1)	-2(1)
C(9)	26(1)	17(1)	17(1)	-2(1)	1(1)	-1(1)
C(10)	31(1)	20(1)	20(1)	2(1)	1(1)	-2(1)
C(11)	26(1)	30(1)	17(1)	0(1)	2(1)	-7(1)
C(12)	24(1)	28(1)	16(1)	-4(1)	5(1)	-2(1)
C(13)	19(1)	22(1)	17(1)	-3(1)	3(1)	0(1)

3.1.4 Anisotropic displacement parameters (Å²x 10³) for 'OIS-S-2021-152'. The anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

	x	у	Z	U(eq)
H(2)	5076	3650	2749	19
H(3)	7281	4800	3476	22
H(4)	8209	6163	4706	23
H(5)	6528	6783	5979	23
H(6)	3833	6106	5966	21
H(9)	2156	1965	5476	24
H(10)	1357	1116	6967	28
H(11)	126	2553	8075	29
H(12)	-328	4839	7708	27
H(13)	418	5703	6217	23

3.1.5 Hydrogen coordinates (x 10⁴) and isotropic displacement parameters Å²x 10³ for 'OIS-S-2021-152'.

3.1.6 Torsi	on angles	[°] for	'OIS-S	-2021-152	
-------------	-----------	---------	--------	-----------	--

O(1)-S(1)-N(1)-C(1)	101.12(17)
C(7)-S(1)-N(1)-C(1)	-23.06(19)
C(8)-S(1)-N(1)-C(1)	-138.37(16)
S(1)-N(1)-C(1)-O(2)	-167.62(15)
S(1)-N(1)-C(1)-N(2)	13.4(3)
C(2)-N(2)-C(1)-O(2)	-174.46(18)
C(2)-N(2)-C(1)-N(1)	4.5(3)
C(1)-N(2)-C(2)-C(7)	-7.7(3)
C(1)-N(2)-C(2)-C(3)	173.80(18)
N(2)-C(2)-C(3)-C(4)	179.81(18)
C(7)-C(2)-C(3)-C(4)	1.2(3)
C(2)-C(3)-C(4)-C(5)	0.4(3)
C(3)-C(4)-C(5)-C(6)	-1.7(3)
C(4)-C(5)-C(6)-C(7)	1.4(3)
N(2)-C(2)-C(7)-C(6)	179.92(17)
C(3)-C(2)-C(7)-C(6)	-1.5(3)
N(2)-C(2)-C(7)-S(1)	-5.3(2)
C(3)-C(2)-C(7)-S(1)	173.23(14)
C(5)-C(6)-C(7)-C(2)	0.2(3)
C(5)-C(6)-C(7)-S(1)	-174.33(14)
O(1)-S(1)-C(7)-C(2)	-110.28(15)
N(1)-S(1)-C(7)-C(2)	18.50(17)
C(8)-S(1)-C(7)-C(2)	132.51(15)
O(1)-S(1)-C(7)-C(6)	64.52(17)
N(1)-S(1)-C(7)-C(6)	-166.71(16)
C(8)-S(1)-C(7)-C(6)	-52.69(18)
O(1)-S(1)-C(8)-C(9)	159.83(16)
N(1)-S(1)-C(8)-C(9)	33.32(19)
C(7)-S(1)-C(8)-C(9)	-81.86(18)
O(1)-S(1)-C(8)-C(13)	-22.43(17)
N(1)-S(1)-C(8)-C(13)	-148.94(15)

C(7)-S(1)-C(8)-C(13)	95.88(16)
C(13)-C(8)-C(9)-C(10)	0.7(3)
S(1)-C(8)-C(9)-C(10)	178.32(16)
C(8)-C(9)-C(10)-C(11)	-0.7(3)
C(9)-C(10)-C(11)-C(12)	0.1(3)
C(10)-C(11)-C(12)-C(13)	0.5(3)
C(11)-C(12)-C(13)-C(8)	-0.4(3)
C(9)-C(8)-C(13)-C(12)	-0.1(3)
S(1)-C(8)-C(13)-C(12)	-177.83(15)

Symmetry transformations used to generate equivalent atoms:

D-HÅ	d(D-H)	d(HÅ)	d(DÅ)	<(DHÅ)
N(2)-H(2)O(2)#1	0.88	2.36	3.058(2)	136.2
C(3)-H(3)O(2)#1	0.95	2.55	3.266(3)	132.3

3.1.7 Hydrogen bonds [Å and °] for 'OIS-S-2021-152'.

Symmetry transformations used to generate equivalent atoms:

#1 x+1/2,-y+1/2,z

- 3.2 X-ray Crystallographic Structure.
 - 3.2.1 Crystal structure.

Figure 1. Crystal structure of 'OIS-S-2021-152'. Thermal ellipsoids for non-H atoms are shown at the 25% probability level.

Figure 2. Crystal structure of 'OIS-S-2021-152'. Thermal ellipsoids for non-H atoms are shown at the 25% probability level. For clarity, hydrogen atoms are omitted.

Figure 3. The packing crystal structure showing the view along the a axis.

Figure 4. The packing crystal structure showing the view along the b axis.

Figure 5. The packing crystal structure showing the view along the c axis.

The ADMET predicted data of compound **2c** and **2d** by the KRICT AI platform

23. 6. 16. 오후 6:15			KRICT AI Platform		
KRİCT				LOGOUT	MENU
	Elapsed tim	ne 2.0			
	7 Module	PredAOT			
	Result	Exception!			TOP
KRİCT	대전광역시 유성구 가정 Tel. 042) 860-7460	성로 141 한국화학연구원			

대전광역시 유성구 가정로 141 한국화학연구원 Tel. 042) 860-7460 E-mail. gyutae@krict.re.kr COPYRIGHT ⓒ KRICT. ALL RIGHTS RESERVED.

23. 6. 16. 오후 6:13			KF	RICT AI Platform			
KRİCT						LOGOUT	MENU
	Elapsed time	2.0					
	Module	PredAOT					
	Result	Exception!					
							TOP

대전광역시 유성구 가정로 141 한국화학연구원 Tel. 042) 860-7460 E-mail. gyutae@krict.re.kr COPYRIGHT ⓒ KRICT. ALL RIGHTS RESERVED.

KRİCT