Supplementary information for

On the high-temperature phase transition of a new chlorocadmate (II) complex incorporating the symmetrical clusters Cd$_2$Cl$_6$: Structural, optical and electrical properties

Hanen Elgahamia, Abderrazek Oueslatia, Samia Nasrb, Ferdinando Costantinoc, Houcine Naïlid*

aLaboratory of spectroscopic characterization and optical materials, Faculty of Sciences, University of Sfax, B.P. 1171, 3000 Sfax, Tunisia
bChemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
cDepartment of Chemistry Biology and Biotechnologies University of Perugia Via Elce di Sotto 8, 06123 Perugia, Italy.
dLaboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences, University of Sfax, BP 1171, 3000 Sfax, Tunisia.

Contents

Figure S1. Experimental and calculated XRD patterns for [(C$_4$H$_9$)$_4$P]$_2$Cd$_2$Cl$_6$ at 300 K and 370 K.

Figure S2. Ln (σ$_{DC}$.T) vs. 1000/T plots, which satisfy the Arrhenius law.

Figure S3. Ln σ_{AC} versus 1000/T at different frequencies.

Figure S4. Temperature dependence of the exponent β value of modulus complex for [(C$_4$H$_9$)$_4$P]$_2$Cd$_2$Cl$_6$.
Fig. S1: Experimental and calculated XRD patterns for \([{(C_4H_9)_4P]}_2Cd_2Cl_6\) at 300 K and 370 K.
Fig. S2: Ln (σ_{DC·T}) vs. 1000/T plots, which satisfy the Arrhenius law.

(II)
Ea_1 = 0.8 eV

(II)
Ea_2 = 0.5 eV

Fig. S3: Ln σ_{AC} versus 1000/T at different frequencies.
Fig. S4: Temperature dependence of the exponent β value of modulus complex for $[(\text{C}_4\text{H}_9\text{)}_4\text{P}]_2\text{Cd}_2\text{Cl}_6$.