Supporting Information

CrXY(X/Y = S, Se, Te) Monolayers as Efficient Anode Material for Li and Na-Ion Batteries: A First-Principles Study

Shubham Sahoo¹, Puja Kumari¹, and Soumya Jyoti Ray¹

¹Department of Physics, Indian Institute of Technology Patna, Bihar, India-801106

E-mail: ray@iitp.ac.in

Janus monolayer	Total energy without DFT –	Total energy with DFT –D3	
	D3 method (eV)	Method (eV)	
CrSSe	-24317.06	-24319.32	
CrSTe	-22534.29	-22536.67	
CeSeTe	-34526.41	-34529.01	

Table S1 : Total energy of janus monolayer with and without DFT-D3 (dispersion)

Table S2: Adsorption energy(E_g) with and without DFT-D3 (dispersion)

Janus monolayer	E _g Li (eV) with DFT-D3	E _g Li (eV) without DFT-	E _g Na (eV) with DFT-D3	E _g Na (eV) without DFT-
monolayer		D3		D3
CrSeTe	-2.23	-2.01	-1.67	-1.38

Fig S1: (a) (b), (c) Band structure of CrSSe, CrSTe and CrSeTe with PBE functional, (d), (e) and (f) band structure of CrSSe, CrSTe and CrSeTe with HSE functional

 $\label{eq:s3} \mbox{Table S3: Band gap of Janus monolayer and Adsorption energy}(E_g) \mbox{ of Li} \mbox{ and Na on H site with PBE and HSE functional}$

Janus	HSE	PBE	E _g (Li) by	E _g (Li) by	E _g (Na) by	E _g (Na)
Monolayer	Bandgap	Bandgap(eV)	HSE (eV)	PBE	HSE (eV)	by
	$E_{g}(eV)$					
				(eV)		PBE(eV)
CrSSe	0	0	-1.93	-1.86	-1.09	-1.01
CrSTe	0	0	-1.72	-1.66	-1.28	-1.20
CrSeTe	0	0	-2.23	-2.15	-1.67	-1.56

Fig S2 :(a) (b), (c) PDOS of CrSSe, CrSTe and CrSeTe with PBE with Fermi-Dirac occupation, (d), (e) and (f) PDOS of CrSSe, CrSTe and CrSeTe with Methfessel-Paxton

Janus CrSSe at lattice constant c (Å)	Bandgap (eV)	Adsorption energy of Li (eV)	Adsorption energy of Na (eV)
15	0	-1.8601	-1.01004
17	0	-1.8600	-1.01004
20	0	-1.8601	-1.01003

Table S4: Band gap and adsorption energy at different lattice constant

Fig S3: (a),(b) and (c), (d) Diffusion barrier of Li and Na above S layer and below Se layer for CrSSe monolayer respectively. (e),(f) and (g), (h) Diffusion barrier of Li and Na above S layer and below Te layer for CrSTe monolayer respectively

Fig S4: (a),(b) and (c), (d) Diffusion barrier of Li and Na above Se layer and below Te layer for CrSeTe monolayer respectively, (e) schematic of the diffusion path