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1. General 
1.1. Materials 
 
Chlorotrityl chloride resin (1-1.6 mmol/g, 100-200 mesh) was purchased from abcr GmbH. 
1-Hydroxybenzotriazole hydrate (HOBt, ≥97%), anhydrous N,N-dimethylformamide (anhydrous DMF, 
99.8%), anhydrous dichloromethane (anhydrous DCM, ≥99.8%), N,N-dimethylformamide (DMF, 
>99%), trifluoroacetic acid (TFA, 99%), anhydrous N-Ethyldiisopropylamine (DIPEA, 99%), N-(3-
Dimethylaminopropyl)-N′-ethylcarbodiimide–hydrochloride (EDC.HCl, 98%), Tris(3-
hydroxypropyltriazolylmethyl)amine (THPTA, 95%), 5-hexynoic acid (97%), piperidine (99%), MES 
hydrate (≥99.5%),  fluorescein isothiocyanate isomer I (FITC, >90%), copper(II) sulfate anhydrous 
(CuSO4, ≥99.99% trace metals basis), tetraethylene glycol, 4-(dimethylamino)pyridine (DMAP, ≥99%), 
N,N'-dicyclohexylcarbodiimide (DCC, 99%), propargyl bromide (80% in toluene) and diethyl ether (DEE, 
99%) were purchased from Sigma-Aldrich. Sodium ascorbate (NaAsc, ≥98%) was purchased from Carl 
Roth GmbH. N,N,N′,N′-tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate (HBTU, 
99%), 2,2,2-trifluoroethanol (TFE, 99%), tetrabutylammonium bromide (TBAB, 99%) and saline-sodium 
citrate buffer  (SSC 20X, pH 7.0) were purchased from Alfa Aesar. Tosyl chloride (99%) and N-(tert-
butoxycarbonyl)glycine (>98.0%) were purchased from TCI. Fmoc-Glu(OtBu)-OH (99%) and NaH (60% 
dispersion in mineral oil) were purchased from Fluorochem. Triphenylphosphine (99%), sodium azide 
(NaN3, 99%), sodium thiosulfate (Na2S2O3), bromine (>99.5%, ACS reagent), anhydrous dioxane 
(molecular sieves, 99.5%, stabilized), and 4-nitrophenyl chloroformate (97%) were purchased from 
Acros Organics.  Methanol (MeOH, 99.8%), acetonitrile (ACN, >99.9%), ethanol (absolute, 99.9%), 
acetone (99.8%), phenylacetaldehyde (98%, stabilized), trimethylsilyliodide (97%, stab. with copper), 
n-butyllithium (n-BuLi, 1.6 M in hexane), diisopropylamide (LDA, redistilled, 99.5%), and 3-
aminopropyltriethoxysilane (APTES, 99%) were purchased from Thermo Fisher Scientific.  Phosphate-
Buffered Saline (PBS 1X, pH 7.4) was purchased from Gibco. Single-stranded oligonucleotides (ssDNA) 
were purchased from GenScript with HPLC purification and have the following sequences: 5'AmMC6-
AACAGCAAGAAGTGCAACGCCAAC and 5'Cy3-GTTGGCGTTGCACTTCTTGCTGTT as probe and Cy3 tagged 
complementary strand, respectively. Magnesium sulfate (MgSO4) was purchased from Reactolab. 
Borosilicate glass slides (10 mm × 10 mm × 0.5 mm, ISO class 5 clean room production) were purchased 
from SCHOTT AG. 
 
6-Azidohexanoic acid was synthesized as reported in literature (D. Chan-Seng and J. F. Lutz, ACS Macro 
Letters, 2014, 3, 291–294). The Kaiser test was carried out as described in the literature (E. Kaiser, R. 
L. Colescott, C. D. Bossinger and P. I. Cook, Analytical Biochemistry, 1970, 34, 595–598). Solid phase 
extraction (SPE) tubes (50 and 20 ml polypropylene SPE tubes with polyethylene frits, 20 µm porosity 
purchased from SUPELCO®) were used for peptide preparation on solid support. All coating procedures 
were conducted with a MSC-100 Cooling Thermoshaker Incubator from Labgene Scientific, 
Switzerland. The glass tubes (reactors) for coating procedures were cleaned before use by immersion 
in a solution of 1 M of NaOH for overnight, rinsed with distilled water and acetone, and dried in an 
oven. The slide surfaces were cleaned and activated with a Femto O2 Plasma system (200 W, Diener 
Electronic). All aqueous solutions were prepared with Milli-Q water and all chemicals were used as 
received, except if noted otherwise. 
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1.2. Characterizations 
 
X-ray Photoelectron Spectroscopy (XPS) measurements were carried out on an Axis Supra (Kratos 
Analytical) using the monochromated Ka X-ray line of an Aluminium anode at the X-Ray Diffraction and 
Surface Analytics Platform (EPFL–ISIC–XRDSAP, Sion, Switzerland). The pass energy was set to 40 eV 
with a step size of 0.15eV. Charge neutralization was done using a low energy electron gun and the 
spectra were referenced at 284.8 eV using the aliphatic component of the C 1s orbital. The XPS spectra 
processing (e.g. Gaussian peak fitting and elements present on the surface) was carried out by a 
commercial CasaXPS software package using a Shirley and linear background (Casa Software Ltd., U.K.). 
Fluorescence measurements were carried out with a Synergy H1 microplate reader from BioTek.  
1H and 13C NMR spectra were recorded in CDCl3, MeOD, or D2O on Bruker Avance III-400, Bruker 
Avance-400 or Bruker DRX-400 spectrometers (Bruker, Billerica, MA, USA). 
The qualitative accurate masses were measured by ESI-TOF using the Xevo G2-S QTOF (Waters) and 
nanoESI-FT-MS using the Elite™ Hybrid Ion Trap-Orbitrap (ThermoFisher) Mass Spectrometer. 
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2. Synthesis 
2.1 Peptide synthesis 
 
[Glu)]3-azide, [Glu)]3-alkyne, Met.[Glu)]2-azide and Met.[Glu)]2-alkyne were synthetized via solid-phase 
peptide synthesis, following the steps described below. 
 
Preparation of CTC-[Glu(OtBu)]3 
Loading of the first amino acid on the resin. 0.5 g of chlorotrityl chloride resin (≈ 0.8 mmol, 1 equiv) 
was swollen in 5 ml of anhydrous DCM and washed 3 times with 3 mL of anhydrous DCM in a 50 ml 
SPE tube under argon. Fmoc-Glu(OtBu)-OH (2 equiv, 0.681 g,  1.6 mmol) was added and the tube was 
then sealed by rubber sealing stopper (for loading of Fmoc-Met-OH, 0.594 g was added). The vessel 
was degassed by performing 3 vacuum purging/argon cycles. Anhydrous DCM (4 mL) was added and 
the tube was agitated on a shaker for 10 min in order to complete dissolving of amino acid and swelling 
of resin under argon. DIPEA (4 equiv, 0.6 mL, 3.2 mmol) was added and the mixture was agitated for 
1.5 h under argon at r.t. The solution was filtered and the resin was washed 6 times with DMF and 
DCM. In order to cap unreacted groups on the resin, a mixture of DCM, methanol, and DIPEA (0.8, 1.5, 
0.5 mL, respectively) was added and the tube was agitated for 15 min (twice). The solution was filtered, 
and the resin was washed 6 times with DMF and DCM, respectively. The resin was dried under vacuum 
at room temperature for 48 h. The yield of amino acid grafted on the resin was measured by 
gravimetric analysis, and found to be 1.12 mmol/g (70 %). 
Successive couplings of Glu (OtBu)-OH.  The Fmoc-protecting groups were removed by agitation of the 
resin for 5 min with 10 mL of 25% (vol/vol) piperidine solution in DMF. After filtering and rinsing the 
resin with DMF, the deprotection procedure was carried out again for a duration of 30 minutes. 
Subsequently, the resin was washed with DMF and DCM. Fmoc-Glu(OtBu)-OH (0.70 g, 1.65 mmol, 3 
equiv), HBTU (3 equiv, 0.63 g, 1.65 mmol) and HOBt (3 equiv, 0.22 g, 1.65 mmol) were dissolved in 5 
ml anhydrous DMF and added to the tube. DIPEA (0.6 mL, 3.3 mmol, 6 equiv) was added to the solution, 
which was transferred to the SPE tube. The mixture was agitated for 1.5 h at r.t.  After filtration and 
washing of the resin, completion of the coupling was monitored using the Kaiser test. The procedure 
was repeated for coupling another Glu(OtBu)-OH.  
 
Preparation of CTC-[Glu(OtBu)]3-azide 
6-Azidohexanoic acid (3 equiv, 0.280 g, 1.65 mmol), HBTU (3 equiv, 0.63 g, 1.65 mmol) and HOBt (3 
equiv, 0.22 g, 1.65 mmol) were dissolved in 5 mL of anhydrous DMF. DIPEA (6 equiv, 0.6 mL, 3.3 mmol) 
was added to the solution, which was transferred to the SPE tube. The mixture was agitated for 1.5 h 
at r.t.  After filtration and washing of the resin, completion of the coupling was monitored using the 
Kaiser test. 
 
Preparation of CTC-[Glu(OtBu)]3-alkyne 
5-Hexynoic acid (3 equiv, 0.176 g, 1.57 mmol), HBTU (3 equiv, 0.59 g, 1.57 mmol) and HOBt (3 equiv, 
0.21 g, 1.57 mmol) were dissolved in 5 mL of anhydrous DMF. DIPEA (6 equiv, 0.4 mL, 3.15 mmol) was 
added to the solution, which was transferred to the SPE tube. The mixture was agitated for 1.5 h at r.t.  
After filtration and washing of the resin, completion of the coupling was monitored using the Kaiser 
test. 
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Cleavage from the resin 
The resin was washed with methanol (3 times) and DCM (6 times), and transferred to a glass vessel. A 
solution of DCM/TFE (80:20) was added and the mixture was agitated for 45 min at r.t. The solution 
was collected by filtration. Treatment of the resin with a solution of DCM/TFE (80:20) and filtration 
was repeated twice. The collected solutions were combined and concentrated under vacuum. The 
resulting peptide was obtained by precipitation in DEE/hexane (1:1) and dried under vacuum at r.t. for 
48 h.   
 
For the preparation of Met.[Glu(OtBu)]2-azide and Met.[Glu(OtBu)]2-alkyne, the above procedure is 
applied with the loading of Fmoc-Met-OH to the CTC resin as first amino acid residue.    
 
[Glu(OtBu)]3-azide: 1H NMR (400 MHz, MeOD) δ 4.39 – 4.20 (m, 3H), 3.19 (d, J = 6.8 Hz, 3H), 2.32 – 2.13 
(m, 8H), 2.13 – 1.90 (m, 3H), 1.90 – 1.68 (m, 3H), 1.65 – 1.45 (m, 4H), 1.35 (d, J = 1.5 Hz, 29H). 13C NMR 
(101 MHz, MeOD) δ 174.74, 173.14, 172.63, 172.52, 172.36, 172.30, 172.08, 80.44, 80.38, 80.35, 52.56, 
52.38, 51.50, 50.90, 35.16, 31.27, 31.24, 31.04, 28.23, 27.05, 26.98, 26.82, 26.49, 25.97, 24.95. HRMS 
(ESI/QTOF) m/z: [M + Na]+ Calcd for C33H56N6NaO11

+ 735.390478; Found 735.38993. 1H NMR and ESI-
MS spectra are given in Figure S1. 
 
[Glu(OtBu)]3-alkyne:  1H NMR (400 MHz, MeOD) δ 4.38 – 4.19 (m, 3H), 2.33 – 2.19 (m, 8H), 2.17 – 1.92 
(m, 6H), 1.88 – 1.65 (m, 5H), 1.43 – 1.26 (m, 26H). 13C NMR (101 MHz, MeOD) δ 174.16, 173.13, 172.65, 
172.54, 172.38, 172.31, 172.11, 82.79, 80.45, 80.39, 80.37, 68.90, 52.60, 52.38, 51.48, 34.14, 31.24, 
31.04, 27.00, 26.78, 26.49, 24.37, 17.28. HRMS (ESI/QTOF) m/z: [M + Na]+ Calcd for C33H53N3NaO11

+ 
690.3572; Found 690.3582. 1H NMR and ESI-MS spectra are given in Figure S2. 
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Figure S1. 1H NMR spectrum of [Glu(OtBu)]3-azide (a), ESI-MS spectrum of [Glu(OtBu)]3-azide (b).   
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Figure S2. 1H NMR spectrum of [Glu(OtBu)]3-alkyne (a), ESI-MS spectrum of [Glu(OtBu)]3-alkyne (b). 
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Figure S3. 1H NMR spectrum of Met.[Glu(OtBu)]2-azide (a), ESI-MS spectrum of Met.[Glu(OtBu)]2-azide (b).   
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Figure S4. 1H NMR spectrum of Met.[Glu(OtBu)]2-alkyne (a), ESI-MS spectrum of Met.[Glu(OtBu)]2-alkyne (b).   
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Figure S5. 1H NMR spectrum of P-azide 
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Figure S6. 1H NMR spectrum of P-alkyne 
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The deprotection of Met.[Glu(OtBu)]2-azide and Met.[Glu(OtBu)]2-alkyne is performed with the same 
procedure to afford Ps-azide and Ps-alkyne, respectively. 
 
Ps-azide. 1H NMR (400 MHz, MeOD) δ 4.49 – 4.14 (m, 3H), 3.21 – 3.16 (m, 2H), 2.57 – 2.41 (m, 2H), 
2.40 – 2.26 (m, 4H), 2.24 – 2.13 (m, 2H), 2.13 – 1.96 (m, 5H), 1.95 – 1.76 (m, 3H), 1.67 – 1.44 (m, 5H), 
1.40 – 1.25 (m, 2H). HRMS (ESI/QTOF) m/z: [M + H-1]- Calcd for C21H33N6O9S- 545.2035; Found 545.2035. 
 

 
Figure S7. 1H NMR spectrum of Ps-azide   
 
Ps-alkyne. 1H NMR (400 MHz, MeOD) δ 4.49 – 4.11 (m, 3H), 2.58 – 2.24 (m, 7H), 2.18 – 2.10 (m, 3H), 
2.09 – 1.95 (m, 5H), 1.94 – 1.78 (m, 3H), 1.78 – 1.64 (m, 2H). HRMS (ESI/QTOF) m/z: [M + H-1]- Calcd for 
C21H30N3O9S- 500.1708; Found 500.1714. 
 

0.51.01.52.02.53.03.54.04.55.05.5
f1 (ppm)

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

A (m)
4.31

B (m)
3.20

C (m)
1.52

D (m)
1.32

E (m)
1.86

F (m)
2.03

G (m)
2.19

H (m)
2.34

I (m)
2.48

2.
12

5.
42

2.
89

4.
95

2.
01

4.
09

1.
53

2.
09

3.
00

1.
29

1.
29

1.
30

1.
30

1.
31

1.
32

1.
33

1.
33

1.
34

1.
35

1.
48

1.
48

1.
49

1.
50

1.
51

1.
51

1.
53

1.
55

1.
57

1.
59

1.
83

1.
84

1.
84

1.
85

1.
86

1.
86

1.
87

1.
87

1.
88

1.
88

1.
89

1.
98

2.
00

2.
00

2.
01

2.
01

2.
02

2.
02

2.
03

2.
03

2.
04

2.
04

2.
05

2.
06

2.
15

2.
17

2.
18

2.
19

2.
20

2.
28

2.
30

2.
32

2.
32

2.
33

2.
34

2.
34

2.
35

2.
36

2.
42

2.
44

2.
44

2.
48

2.
50

3.
18

3.
20

3.
20

3.
21

3.
21

3.
21

3.
22

4.
25

4.
26

4.
27

4.
28

4.
30

4.
31

4.
32

4.
42

4.
43

4.
44

4.
45

HN

S

OHO

HN

HO O

O

NH
HO

O

O
O

N3



  

12 
 

 
Figure S8. 1H NMR spectrum of Ps-alkyne  
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2.2 Synthesis of silanization reagents  
2.2.1. Synthesis of 3-azidopropyltriethoxysilane (APTES-N3) 
 
The preparation of APTES-N3 was adapted from a procedure reported in Kantheti, S.; Narayan, R.; Raju, 
K. VSN. Pyrene-anchored ZnO nanoparticles through click reaction for the development of 
antimicrobial and fluorescent polyurethane nanocomposite. Polym. Int. 2015, 64, 267-274. 
 

 
Scheme S1. Synthesis of APTES-N3. Conditions: NaN3, Bu4NBr cat., dry ACN, reflux, 24h. 
 
NaN3 (2.0 equiv, 1.08 g, 16.6 mmol) and tetrabutylammonium bromide (0.24 equiv , 0.64 g, 2 mmol) 
was dissolved in dry ACN (50 mL) under argon atmosphere. 3-Chloropropyltriethoxysilane (1.0 equiv, 
2 g, 8.3 mmol) was added and the mixture was stirred under reflux for 24 h. The volatiles were 
evaporated. The crude product was diluted in DEE (50 mL) and the suspension was filtered and washed 
with DEE. The combined solutions were evaporated to afford APTES-N3 as a colorless liquid (1.85 g, 
90 %). The analytical data were in accordance with reported characterizations. 
1H NMR (400 MHz, CDCl3) δ 4.14 (q, J = 7.0 Hz, 6H), 3.58 (t, J = 7.0 Hz, 2H), 2.12 – 1.95 (m, 2H), 1.55 (t, 
J = 7.0 Hz, 9H), 1.08 – 0.93 (m, 2H).  
 

 
Figure S9. 1H NMR spectrum of APTES-N3 
 
2.2.2. Synthesis of N-(3-(triethoxysilyl)propyl)hex-5-ynamide (APTES-alkyne) 
 

 
Scheme S2. Synthesis of APTES-alkyne. Conditions: 5-hexynoic acid, EDC.HCl, DCM, 0°C to r.t, 4h. 
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5-Hexynoic acid, (1.0 equiv, 253 mg, 2.26 mmol) was dissolved in DCM (50 mL). EDC.HCl (1.0 equiv, 433 
mg, 2.26 mmol) dissolved in DCM (10 mL) was then added dropwise. The solution was cooled to 0°C 
and stirred for 10 min. (3-Aminopropyl)triethoxysilane (1.0 equiv, 0.5 g, 2.26 mmol) dissolved in DCM 
(5 mL) was added dropwise and the reaction mixture was stirred at 0 °C for 2 hours, then at r.t. for 2 
hours. The volatiles were evaporated under reduced pressure. The crude product was purified by flash 
column chromatography (silica gel, EtOAc/hexane (4:1)) to provide APTES-alkyne as a yellow oil (0.45 
g, 63%). 
 
1H NMR (400 MHz, CDCl3) δ 3.80 (q, J = 7.0 Hz, 6H), 3.23 (td, J = 6.9, 5.8 Hz, 2H), 2.32 – 2.19 (m, 4H), 
1.94 (t, J = 2.6 Hz, 1H), 1.88 – 1.79 (m, 2H), 1.66 – 1.56 (m, 2H), 1.20 (t, J = 7.0 Hz, 9H), 0.66 – 0.57 (m, 
2H). 13C NMR (101 MHz, CDCl3) δ 172.05, 83.60, 77.23, 69.08, 58.49, 58.45, 41.81, 35.18, 24.22, 22.90, 
18.45, 18.31, 17.86, 7.77. 
 

 
Figure S10. 1H NMR spectrum of APTES-alkyne 
 
2.2.3. Synthesis of APTES-DIBO 
 
The synthesis of APTES-DIBO was performed following procedures adapted from: Mbua, N. E.; Guo, J.; 
Wolfert, M. A.; Steet, R.; Boons, G. J. Strain-promoted alkyne-azide cycloadditions (SPAAC) reveal new 
features of glycoconjugate biosynthesis. ChemBioChem 2011, 12, 1912–1921. Jung, M. E.; Miller, S. J. 
Total synthesis of isopavine and intermediates for the preparation of substituted amitriptyline analogs: 
facile routes to substituted dibenzocyclooctatrienes and dibenzocycloheptatrienes. J. Am. Chem. Soc. 
1981, 103, 1984-1992. Jung, M. E.; Mossman, A. B.; Lyster, M. A. Direct synthesis of 
dibenzocyclooctadienes via double ortho Friedel-Crafts alkylation by the use of aldehyde-trimethylsilyl 
iodide adducts. J. Org. Chem. 1978, 43, 3698-3701. 
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Scheme S3. Synthesis of APTES-DIBO. Conditions: i) Phenylacetaldehyde, trimethylsilyl iodide, dry chloroform, 
5°C, 7 days; ii) BuLi, dry THF, r.t, 4h; iii) Bromine, dry chloroform, r.t, 4h; iv) Lithium diisopropylamide, dry THF, 
r.t, 1h; v) 4-nitrophenylchloroformate, pyridine, dry DCM, r.t, 16h; vi) APTES, dry dioxane, r.t, overnight. 
 
Synthesis of intermediate (1) 
Phenyalcetaldehyde (1.0 equiv, 83.2 mmol, 9.7 mL) was dissolved in dry chloroform (40 mL) under 
inert conditions. The solution was cooled to 0°C. Trimethylsilyl iodide (1.02 equiv, 84.9 mmol, 12.1 mL) 
was added. The resulting mixture was stirred at 5°C for 7 days. The solution was quenched with 
saturated Na2S2O3 (60 mL). The crude product was purified via column chromatography (silica gel,  
hexane:EtOAc 50:1 to 1:1) to afford (1) as a brown solid (25.2 mmol, 5.6 g, 86%). The analytical data 
were in accordance with previously reported data.  
 
1H NMR (400 MHz, CDCl3) δ 7.15-7.07 (m, 6H, 6 × Ar-H), 6.99-6.97 (m, 2H, 2 × Ar-H), 5.31-5.29 (d, 2H, 
2 × CH), 3.56 (dd, 2H, 2 × HC-H), 2.80 (d, 2H, 2 × HC-H). 
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Figure S11. 1H NMR spectrum of intermediate (1) 
 
Synthesis of intermediate (2) 
To a solution of intermediate (1) (1 equiv, 14.17 mmol, 3.15 g) in dry THF (30 mL) was added n-
butyllithium (1.6 M solution, 2 equiv, 28.34 mmol, 17.7 mL). The solution was stirred for 4 h at r.t., 
then quenched with water. THF was concentrated under reduced pressure, and the compound was 
extracted with DCM (5×), and washed with brine. The combined organic extracts were dried over 
MgSO4, filtered, and concentrated under vacuum. The crude product was purified by column 
chromatography (silica gel, PE/EtOAc 5:1) to afford the intermediate (2) as a white solid (8.1 mmol, 1.8 
g, 57%). The analytical data were in accordance with previously reported data.  
 
1H NMR (400 MHz, CDCl3) δ 7.47 – 7.45 (m, 1H, Ar-H), 7.25 – 7.09 (m, 7H, 6 × Ar-H), 6.89 – 6.81 (m, 2H, 
RHC=CHR), 5.31-5.27 (dd, 1H, CH), 3.48-3.43 (dd, 1H, HC-H), 3.36-3.30 (dd, 1H, HC-H). 
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Figure S12. 1H NMR spectrum of intermediate (2) 
 
Synthesis of intermediate (3) 
To a solution of intermediate (2) (1 equiv, 6.12 mmol, 1.36 g) in dry chloroform (40 mL) was added 
bromine (1 equiv, 6.12 mmol, 0.315 mL). The resulting mixture was stirred for 4 h at r.t. The solution 
was quenched with saturated Na2S2O3 (40 mL) and the compound was extracted with chloroform. The 
organic phase was dried over MgSO4, filtered, and concentrated under vacuum. The crude product was 
purified by column chromatography (silica gel, PE:DCM 2:1) to afford intermediate (3) as a white solid 
(2.7 mmol, 1.0 g, 44%). The analytical data were in accordance with previously reported data.  
 
1H NMR (400 MHz, CDCl3) δ 7.69-7.67 (dt, 1H, Ar-H, diast. 1), 7.63 – 7.57 (m, 2H, 2 × Ar-H, diast. 2), 7.40 
– 7.38 (d, 1H, Ar-H, diast. 1), 7.22 – 6.86 (m, 12H, 12 × Ar-H, diast. 1 and 2), 5.88 – 5.82 (m, 2H, Br-CH, 
diast 1), 5.76 (dd, 1H, CH, diast 2), 5.47-5.45 (dd, 1H, CH, diast 1), 5.33-5.28 (m, 2H, Br-CH, diast 2), 
3.77-3.72 (ddd, 1H, HC-H, diast 1), 3.62-3.56 (dd, 1H, HC-H, diast 2), 3.12-3.07 (d, 1H, HC-H, diast 1), 
2.87-2.83 (d, 1H, HC-H, diast 2). 
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Figure S13. 1H NMR spectrum of intermediate (3) 
 
Synthesis of DIBO 
Intermediate (3) (1 equiv, 3.16 mmol, 1.2 g) was dissolved in dry THF (20 mL) and the solution was 
cooled to 0°C. A fresh solution of lithium diisopropylamide (0.8 M in dry THF, 5.8 equiv, 18.32 mmol, 
23.0 mL) was added and the resulting solution was stirred for 1 hour at r.t. The solution was quenched 
with water and THF was removed under reduced pressure. The product was extracted with DCM and 
washed with water (1×) and brine (1×). The crude product was purified via column chromatography 
(silica gel, PE:DCM 1:3) to afford DIBO as a white solid (2.0 mmol, 440 mg, 63%). The analytical data 
were in accordance with previously reported data. 
  
1H NMR (400 MHz, CDCl3) δ 7.76-7.74 (dt, 1H, Ar-H), 7.45 – 7.28 (m, 7H, 7 × Ar-H), 4.65-4.63 (t, 1H, CH), 
3.13-3.09 (dd, 1H, HC-H), 2.95-2.92 (dd, 1H, HC-H). 
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Figure S14. 1H NMR spectrum of DIBO 
 
Synthesis of DIBO-nitrophenyl 
DIBO (1 equiv, 3.62 mmol, 796 mg) was dissolved in dry DCM (20 mL) under Ar. 4-
nitrophenylchloroformate (2 equiv, 7.23 mmol, 1.46 g) and pyridine (5 equiv, 18.08 mmol, 1.45 mL) 
were added. The mixture was stirred for 16 h at r.t. The solution was concentrated under reduced 
pressure and the crude product was purified via column chromatography (silica gel, PE:DCM 1:1) to 
afford DIBO-nitrophenyl  as a white solid (2.30 mmol, 884 mg, 63%). The analytical data were in 
accordance with previously reported data. 
  
1H NMR (400 MHz, CDCl3) δ 8.30 – 8.27 (d, 2H, 2 × Ar-H), 7.63-7.61 (d, 1H, DIBO-H), 7.44 – 7.31 (m, 9H, 
7 × DIBO-H and 2 × Ar-H), 5.59-5.58 (m, 1H, CHDIBO), 3.36-3.32 (dd, 1H, HC-HDIBO), 3.07-3.00 (dd, 1H, HC-
HDIBO).  
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Figure S15. 1H NMR spectrum of DIBO-nitrophenyl 
 
 
Synthesis of APTES-DIBO 
To a solution of DIBO-nitrophenyl (1 equiv, 0.16 mmol, 60 mg) in dry dioxane (7 mL) were added (3-
aminopropyl)triethoxysilane (1.57 equiv, 0.24 mmol, 57 μL) and pyridine (3 equiv, 0.50 mmol, 40 μL). 
The resulting mixture was stirred overnight at r.t. The solution was concentrated under reduced 
pressure. The crude product was purified via column chromatography (silica gel, PE:EtOAc 8:2) to 
afford APTES-DIBO as a white solid (0.08 mmol, 38 mg, 47%). 
 
1H NMR (400 MHz, CDCl3) δ 7.50-7.48 (d, 1H, 1 × Ar-H), 7.37-7.26 (m, 7H, 1 × Ar-H), 5.49 (s, 1H, CHDIBO), 
3.37-3.82 (q, 6H, CH3-CH2-O-Si), 3.24-3.13 (m, 3H, 2 × NH-CH2-CH2, 1 × dd, 1H, HC-H), 3.24-3.13 (dd, 1H, 
HC-H), 1.70-1.63 (q, 2H, CH2-CH2-NH), 1.29-1.23 (m, 9H, 3 × CH3), 0.68-0.64 (t, 2H, Si-CH2-CH2). 
HRMS (ESI/QTOF) m/z: [M + Na]+ Calcd for C26H33NNaO5Si+ 490.2020; Found 490.2031 
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Figure S16. 1H NMR spectrum of APTES-DIBO 
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2.3. Synthesis of fluorescent labelling reagents 
2.3.1. Synthesis of N3-cleaveable-FITC 
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Scheme S4. Synthesis of N3-cleavable-FITC. Conditions: i) p-Toluenesulfonyl chloride, Et3N, dry DCM, r.t, 2 days; 
ii) NaN3, dry DMF, 90°C, 15h; iii) N-(tert-butoxycarbonyl)glycine, DMAP, DCC, r.t, overnight; iv) TFA, DCM, r.t, 5h ; 
v) FITC, Et3N, dry THF, r.t, 3h. 
 
Synthesis of intermediate (4) 
Tetraethylene glycol (5 equiv, 514.9 mmol, 100.0 g) was dissolved in dry DCM (40 mL) under argon. 
The mixture was cooled to 0 °C. p-Toluenesulfonyl chloride (1.0 equiv, 103.0 mmol, 19.6 g) and 
triethylamine (Et3N, 3 equiv, 308.91 mmol, 43.06 mL) were added. The mixture was stirred at r.t for 2 
days. The reaction mixture was washed with water (3 × 50 mL). The organic phase was dried over 
MgSO4, filtered and concentrated under vacuum. The crude product was purified by column 
chromatography (silica gel, DCM/MeOH 1:30) to afford the intermediate (4) as a colorless oil (76.72 
mmol, 15.9 g, 44%). The analytical data were in accordance with previously reported data (K. Heller, P. 
Ochtrop, M. F. Albers, F. B. Zauner, A. Itzen and C. Hedberg, Angewandte Chemie International Edition, 
2015, 54, 10327–10330). 
  
1H NMR (400 MHz, CDCl3) δ 7.81-7.39 (d, J = 7.8 Hz, 2H, 2 × Ar-H), 7.35 – 7.33 (d, J = 7.3 Hz, 2H, 2 × Ar-
H), 4.18 – 4.15 (m, 2H, CH2-OTs), 3.72 – 3.59 (m, 14H, 3 × CH2-O-CH2 and CH2-CH2-OH), 2.45 (s, 3H, Ar-
CH3).  
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Figure S17. 1H NMR spectrum of intermediate (4) 
 
 
Synthesis of intermediate (5) 
NaN3 (1.2 equiv, 92.1 mmol, 6.0 g) was added to a solution of intermediate (4) (1.0 equiv, 76.7 mmol, 
26.7 g) in dry DMF (25 mL). The resulting mixture was stirred at 90 °C for 15 h. The solvent was 
evaporated under vacuum and the product was extracted with EtOAc (30 mL) and washed with brine 
(3 × 30 mL). The organic layer was dried over MgSO4 and concentrated in vacuo to afford intermediate 
(5) as a yellow oil (24.2 mmol, 5.3 g, 29%). The analytical data were in accordance with previously 
reported data (S. M. F. M. Passemard, EPFL, 2014). 
1H NMR (400 MHz, CDCl3) δ 3.74 – 3.72 (m, 2H, CH2-OH), 3.69 – 3.67 (m, 10H, 5 × CH2-O-CH2), 3.63 – 
3.61 (m, 2H, CH2-CH2-N3), 3.41-3.38 (td, 2H, CH2-N3).  
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Figure S18. 1H NMR spectrum of intermediate (5) 
 
Synthesis of intermediate (6) 
To a solution of intermediate (5) (1 equiv, 0.48 mmol, 105 mg) in dry DCM (8 mL) were added N-(tert-
butoxycarbonyl)glycine (0.95 equiv, 0.45 mmol, 105 mg), 4-(dimethylamino)pyridine (DMAP, 1.05 
equiv,  0.50 mmol, 56 mg) and dicyclohexyl carbodiimide (DCC, 1.05 equiv,  0.50 mmol,  103.5 mg). The 
resulting mixture turned blurry after 5 minutes and was stirred overnight at r.t. The solvent was 
removed under vacuum, and the product was extracted with DCM and washed with water. The organic 
phase was dried over MgSO4, filtered and concentrated under vacuum. The crude product was purified 
by column chromatography (silica gel, DCM/MeOH 100:0 to 95:5) to afford intermediate (6) as a white 
solid (0.33 mmol, 122.4 mg, 72%).  
1H NMR (400 MHz, CDCl3) δ 4.30 – 4.28 (t, 2H, CH2-O-C=O), 3.93-3.92 (d, 2H, CH2-C=O-O), 3.71-3.64 (m, 
12H, 6 × CH2-O), 3.38 – 3.36 (t, 2H, CH2-N3), 1.43 (s, 9H, CH3). HRMS (ESI/QTOF) m/z: [M + Na]+ Calcd 
for C15H28N4NaO7

+ 399.1850; Found 399.1842  
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Figure S19.1H NMR spectrum of intermediate (6) 
 
Synthesis of N3-cleavable-FITC 
To a solution of intermediate (6) (0.096 mmol, 36.2 mg) in dry DCM (5 mL), trifluoroacetic acid was 
added (TFA, 1mL). The mixture was stirred for 5 h at r.t. The solvent was removed under air flow. The 
resulting intermediate (7) (HRMS (ESI/QTOF) m/z: [M + H]+ Calcd for C10H21N4O5

+ 277.1506; Found 
277.1503) was used without any further purification.  
To a solution of intermediate (7) (1 equiv, 0.58 mmol, 225 mg) in dry THF (10 mL) under argon (brown 
glassware), Et3N (3.5 equiv, 2.02 mmol, 281 μL) and fluorescein isothiocyanate (FITC, 0.5 equiv, 0.29 
mmol, 112 mg) were added. The resulting mixture was stirred for 3 h at r.t. The solvent was evaporated 
under reduced pressure and the crude product was purified via reversed-phase chromatography 
(MeOH:H2O 1:2 + TFA 0.1% to MeOH:H2O 1:1 + TFA 0.1%) to afford N3-cleavable-FITC as an orange 
solid (0.03 mmol, 23 mg, 11%). 
 
1H NMR (400 MHz, MeOD) δ 8.33-8.31 (m, 1H, CH-Ar), 7.90-7.87 (dd, 1H, CH-Ar), 7.23-7.18 (d, 1H, CH-
Ar), 6.98-6.91 (d, 2H, 2×CH-Ar), 6.84-6.83 (d, 2H, 2×CH-Ar), 6.72-6.67 (dd, 2H, 2×CH-Ar), 4.41 (s, 2H, 
CH2-NH-C=S), 4.31-4.29 (d, 2H, CH2-CH2-O-C=O), 3.74-3.71 (t, 2H, CH2-CH2-O-C=O), 3.66-3.51 (m, 10H, 
5×CH2-O), 3.35-3.30 (m, CH2-N3 and MeOD solvent residual peak). HRMS (ESI/QTOF) m/z: [M + 
H]+ Calcd for C31H32N5O10S+ 666.1864; Found 666.1870.  
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Figure S20. 1H NMR spectrum of N3-cleaveable-FITC 
 
2.3.2. Synthesis of alkyne-cleavable-FITC 
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Scheme S5. Synthesis of alkyne-cleavable-FITC. Conditions: i) NaH, tetraethylene gycol, propargyl bromide, r.t, 
overnight; ii) N-(tert-butoxycarbonyl)glycine, DMAP, DCC, r.t, overnight; iv) TFA, DCM, r.t, overnight ; v) FITC, 
Et3N, dry THF, r.t, 6h. 
 
Synthesis of intermediate (8) 
To a solution of NaH (60%, 0.7 equiv, 1.85 mmol) in dry THF (7 mL) under argon, tetraethylene glycol 
(1 equiv, 2.57 mmol, 444 μL) was added. Then, propargyl bromide was added and the mixture was 
stirred at r.t overnight. The reaction mixture was quenched with water and extracted with DCM. The 
organic phase was dried over MgSO4, filtered, and concentrated under vacuum. The crude product was 
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purified by column chromatography (silica gel, DCM:MeOH 100:0 to 97:3) to afford intermediate (8) 
as yellow oil (1.69 mmol, 393 mg, 91%).  
The analytical data were in accordance with previously reported data (L. N. Goswami, Z. H. Houston, 
S. J. Sarma, S. S. Jalisatgi and M. F. Hawthorne, Org Biomol Chem, 2013, 11, 1116–1126).  
 
1H NMR (400 MHz, CDCl3) δ 4.09 (d, 2H, CH2-C≡CH), 3.61-3.55 (m, 14H, CH2-O), 3.50-3.48 (m, 2H, CH2-
OH), 2.39-2.37 (t, 1H, CH≡C). 
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Figure S21. 1H NMR spectrum of intermediate (8) 
 
Synthesis of intermediate (9) 
To a solution of intermediate (8) (1 equiv, 0.48 mmol, 105 mg) in dry DCM (15 mL), were added N-
(tert-butoxycarbonyl)glycine (0.95 equiv, 0.45 mmol, 105 mg), DMAP (1.05 equiv,  0.50 mmol, 56 mg) 
and dicyclohexyl carbodiimide (1.05 equiv,  0.50 mmol,  103.5 mg). The resulting mixture turned blurry 
after 5 minutes and was stirred overnight at r.t. The solvent was removed under vacuum, and the 
product was extracted with DCM and washed with water. The organic phase was dried over MgSO4, 
filtered, and concentrated under vacuum. The crude product was purified by column chromatography 
(silica gel, DCM/MeOH 100:0 to 95:5) to afford intermediate (9) as a white solid (0.33 mmol, 122.4 mg, 
72%). 
 
1H NMR (400 MHz, CDCl3) δ 4.31-4.29 (t, 2H, CH2-O-C=O), 4.20 (d, 2H, CH2-C≡CH), 3.94-3.93 (d, 2H, CH-
NH-C=O), 3.72-3.65 (m, 14H, CH2-O), 2.43 (t, 1H, CH≡C).  
HRMS (ESI/QTOF) m/z: [M + Na]+ Calcd for C18H31NNaO8+ 412.1942; Found 412.1954. 
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Figure S22. 1H NMR spectrum of intermediate (9) 
 
Synthesis of alkyne-cleavable-FITC 
To a solution of intermediate (9) (1 equiv, 0.126 mmol, 49 mg) in dry DCM (10 mL), TFA (1 mL) was 
added under Ar. The resulting mixture was stirred overnight at r.t. The volatiles were removed under 
air flow and the resulting intermediate (10) (HRMS (ESI/QTOF) m/z: [M]+ Calcd for C13H24NO6+ 
290.1598; Found 290.1604) was used without further purification.  
 
To a solution of intermediate (10) (1 equiv, 0.248 mmol, 100 mg) in dry THF (10 mL),  were added Et3N 
(3.5 equiv, 1.79 mmol, 250 μL) and FITC (1 equiv, 0.246 mmol, 96 mg) under argon in brown glassware. 
The mixture was stirred for 6 h at r.t., and the solvent was evaporated under reduced pressure. The 
crude product was purified by reversed-phase chromatography (MeOH:H2O 1:2 + TFA 0.1% to 
MeOH:H2O 7:3 + TFA 0.1%) to afford alkyne-cleavable-FITC as an orange solid (0.04 mmol, 27 mg, 
16%). 
 
1H NMR (400 MHz, MeOD): δ 8.27 (m, 1H, CH-Ar), 7.90-7.88 (d, 1H, CH-Ar), 7.24-7.22 (d, 1H, CH-Ar), 
6.89-6.87 (d, 2H, 2×CH-Ar), 6.83-6.82 (d, 2H, 2×CH-Ar), 6.70-6.68 (dd, 2H, 2×CH-Ar), 4.43 (s, 2H, CH2-
NH-C=S), 4.33-4.31 (t, 2H, CH2-CH2-O-C=O), 4.17-4.16 (d, 2H, CH2-C≡CH), 3.76-3.74 (m, 2H, CH2-CH2-O-
C=O), 3.68-3.62 (m, 12H, 3×CH2-CH2-O, 3×CH2-CH2-O ), 2.83-2.81 (t, 1H, C≡C-H). HRMS (ESI/QTOF) m/z: 
[M + H]+ Calcd for C34H35N2O11S+ 679.1956; Found 679.1967. 
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Figure S23. 1H NMR spectrum of alkyne-cleavable-FITC 
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3. Surface characterization 
3.1. Quantification of surface reactive groups after silanization  
 
The quantification protocol was adapted from the procedure previously reported by Miyahara, 

K. et al. (1 L. N. Goswami, Z. H. Houston, S. J. Sarma, S. S. Jalisatgi and M. F. Hawthorne, Org 
Biomol Chem, 2013, 11, 1116–1126. 

 
 

 
 
Figure S24. Schematic representation of the quantification of surface azide and alkyne reactive groups. 
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3.2. XPS analysis of functionalized slides 
3.2.1. Characterization of silanized surfaces 

 
Figure S25. XPS survey spectra of S-OH, S-azide and S-alkyne slides. Comparison of silanized slides prepared 
with or without the addition of valeric acid. 

 
Table S1. Surface relative atomic concentration of C, N, O and Si detected via XPS for silanized surfaces. 
Silanization was performed with or without the addition of valeric acid. Surface compositions are expressed as 
atomic percentage (%).  
 

Slides C 1s N 1s O1s Si 2p C/N C/Si N/Si 
S-alkyne 13.9 0.8 57.2 28.1 17.0 0.49 0.03 
S-alkyne/acid 20.5 1.6 51.0 26.9 13.0 0.76 0.06 
S-azide 10.5 0.8 58.8 30.0 12.9 0.35 0.03 
S-azide/acid 16.0 2.0 54.3 27.7 8.0 0.58 0.07 
S-DIBO/acid 16.5 0.6 57.4 25.4 25.6 0.65 0.03 

 
3.2.2. Characterization of peptide conjugated surfaces 
 
Table S2. Surface relative atomic concentration of C, N, O and Si detected via XPS for peptide-conjugated surfaces. 
Surface compositions are expressed as atomic percentage (%). 

 
Slides C 1s N 1s O1s Si 2p C/N 
S-alkyne-P 30.9 6.5 41.8 20.8 4.8 
S-azide-P 21.5 3.5 51.8 23.2 6.1 
S-DIBO-P 16.0 0.7 57.4 26.0 24.3 
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Figure S26.  High-resolution XPS spectra of Cu 2p region on S-alkyne-P slides. a) washing slides with miliQ-water 
and acetonitrile; b) washing slide with 0.1% Tween-20; c) slides treated with Cyclam (2 mg.mL-1). 
 

 
Figure S27. High resolution XPS data of S-azide-P slides. a) C 1s XPS spectrum; b) N 1s spectrum. 
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Figure S28. High resolution XPS spectra of S-alkyne-Ps and S-azide-Ps slides. a), b) N 1s spectra; c), d) C 1s spectra. 

Reaction conditions for peptide conjugation: 3.6 mM of peptide, CuSO4, THPTA, H2O/MeOH 1:1, 4h, 25°C. 
 
3.2.3. Characterization of DNA functionalized surfaces  
 

 
Figure S29. High resolution XPS data of DNA functionalized slides. a) P 2s XPS spectra of S-alkyne-P and S-
alkyne-P-DNA; b) C 1s XPS spectra of S-alkyne-P and S-alkyne-P-DNA; c) N 1s spectra of S-alkyne-P and S-
alkyne-P-DNA. 
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Table S3. Surface relative atomic concentration of C, N, O, P and Si detected via XPS for DNA functionalized slides. 
Surface compositions are expressed as atomic percentage (%). 

 
Slides C 1s N 1s O1s P 2p Si 2p 
S-alkyne-P-DNA 37.0 8.8 36.1 0.46 17.6 
S-azide-P-DNA 28.5 7.1 42.5 0.24 21.7 
S-DIBO-P-DNA 23.0 3.2 51.0 0.16 22.7 
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3.3. Stability of DNA functionalized slides upon storage at 4°C 
 
In order to assess the stability of the sensing surfaces, DNA functionalized slides were immersed in 4 
mL of MilliQ water and kept at 4 °C for 4 weeks. Quantification of the hybridization density was 
performed on the freshly functionalized slides and after 4 weeks of storage.  
 
Table S4. Hybridization density measured at the surface of DNA functionalized slides. Results are expressed as 
mean values ± SD (n independent experiments). 

 
Slides hybridization density (pmol.cm-2)a  hybridization density (pmol.cm-2)b  
S-alkyne-P-DNA 2.9 ± 0.8 (n=3) 2.0 ± 0.2 (n = 3) 
S-DIBO-P-DNA 2.32 ± 0.18 (n=4) 2.5 ± 0.9 (n = 3) 

aQuantification was performed on freshly functionalized slides. bQuantification was performed after storage of 
the slides for 4 weeks at 4°C in MilliQ water 

 
 
 

 
Figure S30. A representative calibration curve of Cy3-complementary reverse probe for quantification of 
hybridization density. 
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