Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

RSC ADVANCES

Supplementary Information associated with the paper

Dual activity of indolin-2-ones containing an arylidene motif: DNA and BSA interaction

Syed Nasir Abbas Bukhari^{1*}, Tariq G. Alsahli², Hasan Ejaz³, Naveed Ahmed⁴, Waqas Ahmad⁵, Mervat A. Elsherif⁶, Nasser H. Alotaibi⁷, Kashaf Junaid⁸, and Nenad Janković^{9*}

¹Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, 72388, Saudi Arabia; sbukhari@ju.edu.sa (SNAB)

² Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf, 72388, Saudi Arabia; TGAlsahli@ju.edu.sa (TGA)

³ Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Sakaka, Jouf Universi-ty, Al Jouf, 72388, Saudi Arabia; hetariq@ju.edu.sa (HE)

⁴ Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al Jouf, 72388, Saudi Arabia; nakahmad@ju.edu.sa (NA)

⁵ Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia; waqas@usm.my (WA)

⁶ Chemistry Department, College of Science, Jouf University, Al Jouf, 72388, Sakaka, Saudi Arabia; maelsherif@ju.edu.sa (MAE)

⁷ Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; nhalotaibi@ju.edu.sa (NHA)

⁸ School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK Email: kashaf.junaid@qmul.ac.uk (KJ)

⁹ University of Kragujevac, Institute for Information of Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac; nenad.jankovic@kg.ac.rs (NJ)

*Correspondence: sbukhari@ju.edu.sa (SNAB); nenad.jankovic@kg.ac.rs (NJ)

Contents

1.	Experimental data	3
2.	NMR spectra	5
	2.1. ¹ H NMR spectrum of 1-allylindoline-2,3-dione 1	6
	2.2. ¹³ C NMR spectrum of 1-allylindoline-2,3-dione 1	7
	2.3. ¹ H NMR spectrum of 1-allyl-3-(2-oxo-2-phenylethylidene)indolin-2-one 4a	8
	2.4. ¹³ C NMR spectrum of 1-allyl-3-(2-oxo-2-phenylethylidene)indolin-2-one 4a	9
	2.5. ¹ H NMR spectrum of 1-allyl-3-(2-oxo-2-p-tolylethylidene)indolin-2-one 4b	10
	2.6. ¹³ C NMR spectrum of 1-allyl-3-(2-oxo-2-p-tolylethylidene)indolin-2-one 4b	11
	2.7. ¹ H NMR spectrum of 1-allyl-3-(2-(4-bromophenyl)-2-oxoethylidene)indolin-2-one 4c	12
	2.8. ¹³ C NMR spectrum of 1-allyl-3-(2-(4-bromophenyl)-2-oxoethylidene)indolin-2-one 4c	13
	2.9. ¹ H NMR spectrum of 1-allyl-3-(2-(3-aminophenyl)-2-oxoethylidene)indolin-2-one 4d	14
	2.10. ¹³ C NMR spectrum of 1-allyl-3-(2-(3-aminophenyl)-2-oxoethylidene)indolin-2-one 4d	15
	2.11. ¹ H NMR spectrum of 1-allyl-3-(2-(3-nitrophenyl)-2-oxoethylidene)indolin-2-one 4e	16
	2.12. ¹³ C NMR spectrum 1-allyl-3-(2-(3-nitrophenyl)-2-oxoethylidene)indolin-2-one 4e	17
	2.13. ¹ H NMR spectrum of 1-allyl-3-(2-(3-methoxyphenyl)-2-oxoethylidene)indolin-2-one 4f	18
	2.14. ¹³ C NMR spectrum of 1-allyl-3-(2-(3-methoxyphenyl)-2-oxoethylidene)indolin-2-one 4f	19
	2.15. ¹ H NMR spectrum of 1-allyl-3-(2-oxo-2-(pyridin-2-yl)ethylidene)indolin-2-one 4g	20
	2.16. ¹³ C NMR spectrum of 1-allyl-3-(2-oxo-2-(pyridin-2-yl)ethylidene)indolin-2-one 4g	21
	2.17. ¹ H NMR spectrum of 1-allyl-3-(2-oxo-2-(thiophen-2-yl)ethylidene)indolin-2-one 4h	22
	2.18. ¹³ C NMR spectrum of 1-allyl-3-(2-oxo-2-(thiophen-2-yl)ethylidene)indolin-2-one 4h	23
3.	MS spectra of 4a-h	24
4.	IR spectra of 4a-h	29

1. Experimental data

1-allylindoline-2,3-dione 1

Red solid; Yield: 96%; Mp = 95 °C; ¹H NMR (200 MHz, DMSO-d₆) δ 7.68-7.53 (m, 2H, CH_{Ar}), 7.16 -7.03 (m, 2H, CH_{Ar}), 5.96 – 5.77 (m, 1H, =CH), 5.39-5.16 (m, 2H, =CH₂), 4.31 (dt, *J* = 4.9, 1.7 Hz, 2H, N-CH₂) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 183.2, 157.9, 150.5, 138.1, 131.4, 124.5, 123.3, 117.5, 111.2, 41.9 ppm.

1-allyl-3-(2-oxo-2-phenylethylidene)indolin-2-one 4a

Orange solid; Yield: 54 % (1,06 g); Mp = 85 °C; IR v 3434, 1706, 1658, 1619, 1600, 1464, 1346, 1225 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 8.11-8.03 (m, 3H, CH_Ar), 7.81 (s, 1H, =CH), 7.77-7.68 (m, 1H, CH_Ar), 7.63-7.55 (m, 2H, CH_Ar), 7.44-7.35 (m, 1H, CH_Ar), 7.04-6.97 (m, 2H, CH_Ar), 5.97-5.78 (m, 1H, =CH_{allyl}), 5.24-5.14 (m, 2H, =CH₂), 4.39-4.37 (m, 2H, N-CH₂) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 191.3, 166.5, 144.9, 136.9, 135.0, 134.2, 132.7, 131.8, 129.2, 128.7 (2C), 127.1 (2C), 126.4, 122.4, 119.4, 117.1, 109.8, 41.9 ppm; ESI-MS (*m/z*): [M+H]⁺ = 290; Cacld. for C₁₉H₁₅NO₂: C 78.87; H 5.23; N 4.84; Found: C 78.64; H 5.12; N 4.69.

1-allyl-3-(2-oxo-2-p-tolylethylidene)indolin-2-one 4b

Orange solid; Yield: 49 % (1,13 g); Mp = 90-92 °C; IR v 3434, 1714, 1657, 1615, 1605, 1465, 1360, 1348 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 8.01-7.95 (m, 3H, CH_{Ar}), 7.79 (s, 1H, =CH), 7.41-7.32 (m, 3H, CH_{Ar}), 7.03-6.96 (m, 2H, CH_{Ar}), 6.01-5.78 (s, 1H, =CH_{allyl}), 5.23-5.14 (m, 2H, CH₂), 4.37 (d, *J* = 5.0 Hz, 2H, N-CH₂), 2.39 (s, 3H, CH₃) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 190.8, 166.6, 144.9, 144.8, 134.7, 134.5, 132.6, 131.8, 129.8 (2C), 128.8 (2C), 127.4, 126.3, 122.3, 119.4, 117.1, 109.7, 41.9, 21.5 ppm; ESI-MS (*m/z*): [M+H]⁺ = 304; Cacld. for C₂₀H₁₇NO₂: C 79.19; H 5.65; N 4.62; Found: C 79.02; H 5.48; N 4.50.

1-allyl-3-(2-(4-bromophenyl)-2-oxoethylidene)indolin-2-one 4c

Red solid; Yield: 80 % (2,21 g); Mp = 98 °C; IR v 3432, 1716, 1665, 1616, 1596, 1466 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 8.07-7.97 (m, 3H, CH_{Ar}), 7.97-7.70 (m, 3H, =CH + CH_{Ar}), 7.45-7.35 (m, 1H, CH_{Ar}), 7.06-6.98 (m, 2H, CH_{Ar}), 6.02-5.78 (s, 1H, =CH_{allyl}), 5.23-5.14 (m, 2H, CH₂), 4.37 (d, *J* = 5.0 Hz, 2H, N-CH₂) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 190.3, 166.5, 145.1, 136.0, 135.5, 132.9 (2C), 132.2 (2C), 131.8, 130.6, 128.4, 126.6, 126.4, 122.4, 119.4, 117.2, 109.8, 41.9 ppm; ESI-MS (*m/z*): [M]⁺ = 368; Cacld. for C₁₉H₁₄BrNO₂: C 61.97; H 3.83; N 3.80; Found: C 61.70; H 3.64; N 3.72.

1-allyl-3-(2-(3-aminophenyl)-2-oxoethylidene)indolin-2-one 4d

Dark red crystals; Yield: 43 % (1,15 g); Mp = 168 °C; IR v 3435, 2803, 2752, 2572, 1710, 1657, 1614, 1599, 1466, 1256 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 8.07 (d, *J* = 7.4 Hz, 1H, CH_{Ar}), 8.02-7.96 (m, 2H, CH_{Ar}), 7.77 (s, 1H, =CH), 7.66-7.60 (m, 2H, CH_{Ar}), 7.45-7.37 (m, 1H, CH_{Ar}), 7.06-6.98 (m, 2H, CH_{Ar}), 5.96-5.78 (m, 1H, =CH_{allyl}), 5.22-5.13 (m, 2H, =CH₂), 4.38 (d, *J* = 5.0 Hz, 2H, N-CH₂) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 190.4, 166.6, 145.1, 138.1, 136.0, 135.6, 133.0, 131.8, 130.6, 127.2, 126.6, 126.5, 126.2, 122.5, 121.4, 119.4, 117.2, 109.9, 41.9 ppm; ESI-MS (*m*/*z*): [M+H]⁺ = 305; Cacld. for C₁₉H₁₆N₂O₂: C 74.98; H 5.30; N 9.20; Found: C 74.82; H 5.15; N 9.28.

1-allyl-3-(2-(3-nitrophenyl)-2-oxoethylidene)indolin-2-one 4e

Brown solid; Yield: 81 % (2,10 g); Mp = 130 °C; IR v 3428, 1711, 1657, 1609, 1530, 1467, 1346 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 8.73-8.71 (m, 1H, CH_{Ar}), 8.51-8.48 (m, 2H, CH_{Ar}), 8.16 (d, *J* = 7.4 Hz, 1H, CH_{Ar}), 7.92-7.82 (m, 2H, =CH + CH_{Ar}), 7.48-7.39 (m, 1H, CH_{Ar}), 7.08-6.99 (m, 2H, CH_{Ar}), 6.04-5.79 (m, 1H, =CH_{allyl}), 5.24-5.15 (m, 2H, =CH₂), 4.40-4.38 (m, 2H, N-CH₂) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 189.2, 166.5, 148.2, 145.4, 138.2, 136.5, 134.8, 133.4, 131.7, 131.0, 128.1,

127.0, 125.4, 122.9, 122.5, 119.3, 117.2, 109.8, 41.9 ppm; ESI-MS (*m*/*z*): [M+H]⁺ = 335; Cacld. for C₁₉H₁₄N₂O₄: C 68.26; H 4.22; N 8.38; Found: C 68.10; H 4.20; N 8.25.

1-allyl-3-(2-(3-methoxyphenyl)-2-oxoethylidene)indolin-2-one 4f

Orange amorphous solid; Yield: 64 % (1,31 g); Mp = 80 °C; IR v 3434, 1715, 1657, 1620, 1591, 1462, 1354, 1262 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 8.03 (d, *J* = 7.3 Hz, 1H, CH_{Ar}), 7.78 (s, 1H, =CH), 7.69-7.63 (m, 1H, CH_{Ar}), 7.54-7.26 (m, 4H, CH_{Ar}), 7.05-6.97 (m, 2H, CH_{Ar}), 6.02-5.76 (m, 1H, =CH_{allyl}), 5.23-5.14 (m, 2H, =CH₂), 4.37 (d, *J* = 5.0 Hz, 2H, N-CH₂), 3.84 (s, 3H, OCH₃) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 191.0, 166.6, 159.7, 145.0, 138.3, 135.1, 132.8, 131.8, 130.4, 127.1, 126.4, 122.4, 121.5, 120.4, 119.4, 117.2, 112.6, 109.8, 55.6, 41.9 ppm; ESI-MS (*m/z*): [M+H]⁺ = 320; Cacld. for C₂₀H₁₇NO₃: C 75.22; H 5.37; N 4.39; Found: C 75.12; H 5.26; N 4.45.

1-allyl-3-(2-oxo-2-(pyridin-2-yl)ethylidene)indolin-2-one 4g

Dark red crystals; Yield: 27 % (0,60 g); Mp = 118-120 °C; IR v 3434, 1704, 1668, 1619, 1597, 1466, 1363, 1226 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 8.82-8.87 (m, 1H, CH_{Ar}), 8.55-8.51 (m, 1H, CH_{Ar}), 8.45 (s, 1H, =CH), 8.14-8.07 (m, 2H, CH_{Ar}), 7.74-7.72 (m, 1H, CH_{Ar}), 7.43-7.39 (m, 1H, CH_{Ar}), 7.06-6.96 (m, 2H, CH_{Ar}), 5.96-5.77 (m, 1H, =CH_{allyl}), 5.22-5.13 (m, 2H, =CH₂), 4.38-4.35 (m, 2H, N-CH₂) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 190.0, 166.9, 153.4, 149.3, 145.5, 138.0, 136.5, 133.4, 131.8, 128.2, 127.6, 124.9, 122.6, 122.5, 119.7, 117.1, 109.7, 41.9 ppm; ESI-MS (*m/z*): [M+H]⁺ = 291; Cacld. for C₁₈H₁₄N₂O₂: C 74.47; H 4.86; N 9.65; Found: C 74.28; H 4.71; N 9.70.

1-allyl-3-(2-oxo-2-(thiophen-2-yl)ethylidene)indolin-2-one 4h

Red solid; Yield: 27 % (0,64 g); Mp = 119-121 °C; IR v 3428, 1709, 1643, 1613, 1464, 1413, 1352 cm⁻¹; ¹H NMR (200 MHz, DMSO-d₆) δ 8.33 (d, *J* = 7.8 Hz, 1H, CH_ar), 8.18-8.13 (m, 2H, CH_ar), 7.74 (s, 1H, =CH), 7.43 (td, *J* = 7.8, 1.3 Hz, 1H, CH_ar), 7.32 (dd, *J* = 4.9, 3.9 Hz, 1H, CH_ar), 7.09-6.98 (m, 2H, CH_ar), 5.97-5.78 (m, 1H, =CH_{allyl}), 5.23-5.13 (m, 2H, =CH₂), 4.40-4.36 (m, 2H, N-CH₂) ppm; ¹³C NMR (50 MHz, DMSO-d₆) δ 182.6, 166.6, 145.2, 144.9, 137.0, 135.8, 134.7, 133.1, 131.8, 129.4, 127.4, 125.5, 122.4, 119.5, 117.1, 109.7, 41.9 ppm; ESI-MS (*m*/*z*): [M+H]⁺ = 296; Cacld. for C₁₇H₁₄NO₂S: C 68.90; H 4.65; N 4.73; Found: C 68.82; H 4.57; N 4.63.

2. NMR spectra

Figure S1. ¹H NMR spectrum of 1

Figure S2. ¹³C NMR spectrum of 1

Figure S3. ¹H NMR spectrum of 4a

Figure S4. ¹³C NMR spectrum of 4a

Figure S5. ¹H NMR spectrum of 4b

Figure S6. ¹³C NMR spectrum of 4b

Figure S7. ¹H NMR spectrum of 4c (10 mg dissolved in 600 µL DMSO-*d*₆)

Figure S8. ¹³C NMR spectrum of 4c

Figure S9. ¹H NMR spectrum of 4d

Figure S10. ¹³C NMR spectrum of 4d

Figure S11. ¹H NMR spectrum of **4e** (10 mg of **4e** dissolved in 600 μ L DMSO-*d*₆)

Figure S12. ¹³C NMR spectrum of 4e

Figure S13. ¹H NMR spectrum of 4f

Figure S14. ¹³C NMR spectrum of 4f

Figure S15. ¹H NMR spectrum of 4g

Figure S16. ¹³C NMR spectrum of 4g

Figure S17. ¹H NMR spectrum of 4h (residual solvent acetone at 2.10 ppm, reference J. Org. Chem, 1997, 62(21), 7513)

Figure S18. ¹³C NMR spectrum of 4h

3. MS spectra of 4a-h

Figure S19. MS spectrum of 4a

Figure S20. MS spectrum of 4b

Figure S21. MS spectrum of 4c

Figure S22. MS spectrum of 4d

Figure S23. MS spectrum of 4e

Figure S24. MS spectrum of 4f

Figure S25. MS spectrum of 4g

Figure S26. MS spectrum of 4h

4. IR spectra of 4a-h

Figure S27. IR spectrum of 4a

Figure S28. IR spectrum of 4b

Figure S29. IR spectrum of 4c

Figure S30. IR spectrum of 4d

Figure S31. IR spectrum of 4e

Figure S32. IR spectrum of 4f

Figure S33. IR spectrum of 4g

Figure S34. IR spectrum of 4h