Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supporting Information for:

Predicting Pyrolysis Decomposition of PFOA using Computational Nanoreactors: A Thermodynamic Study

Elizabeth Serna-Sanchez and Steven Pellizzeri*

Department of Chemistry and Biochemistry, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL 61920, USA. Email: spellizzeri@eiu.edu

List of contents

Table S1. Observations with change in k _{push}	S2
Table S2. Observations with change in $lpha$	S2
Table S3. Observations of change of k _{push} and alpha	S3
Table S4. Observations of the decomposition species within the nanoreactor.	S3
Table S5. Total ΔG values (kJ•mol⁻¹) of the reaction at different temperatures	S4
Table S6. Total ΔG values (kJ•mol-1) of the recombination of CF_3 and C_2F_3 to form C_3F_6 at different	
temperatures	ς/

Temperature (K)	\mathbf{k}_{push}	α	Observations
298.15	0.04	0.7	Sporadic movement
1000	0.04	0.7	Sporadic movement with occasional bond breakage and reformation
1000	0.05	0.7	Sporadic movement with occasional bond breakage and reformation
1300	0.04	0.7	Rotation from carboxyl group Sporadic movement
1300	0.04	0.7	Sporadic movement with occasional bond breakage and
1300	0.08	0.7	reformation
1300	0.08	0.7	Sporadic movement with occasional bond breakage and reformation
1300	0.12	0.7	Sporadic movement with occasional bond breakage and reformation
			The hydrogen interacted with the fluorine's
1300	0.2	0.7	The molecule curls onto itself. The carboxyl group
			disconnects more often, and the hydrogen interacts with
			the fluorine
1300	0.4	0.7	Simulation failure
Table C1 Observe	±: · · · : ±	مرم مام ما،	and in It

Table S1. Observations with change in k_{push} .

Table S2. Observations with change in $\boldsymbol{\alpha}.$

Temperature (K)	\mathbf{k}_{push}	α	Observations
1300	0.2	1	Sporadic movement with occasional bond breakage and reformation
1300	0.2	1.2	Sporadic movement with occasional bond breakage and reformation
1300	0.2	1.4	Sporadic movement with occasional bond breakage and reformation
1300	0.2	1.6	Sporadic movement with occasional bond breakage and reformation

Table S3. Observations of change of k_{push} and alpha.

Temperature (K)	\mathbf{k}_{push}	α	Observations
1300	0.3	1.4	Sporadic movement with occasional bond breakage and reformation
1300	0.4	1.4	$C_3F_4O_2H$ broke off and separated into CO_2H and C_2F_4 Resulted in simulation failure
1300	0.5	1.4	Simulation failure
1300	0.5	1.6	${\rm CO_2}$ broke off, the hydrogen first attached to a F and then the carbon creating ${\rm C_7F_{15}H}$
1300	0.4	1.6	CO ₂ and HF broke off

Table S4. Observations of the decomposition species within the nanoreactor.

Species	Temperature (K)	\mathbf{k}_{push}	α	Observations
C ₈ F ₁₅ O ₂ H	1300	0.4	1.6	Split into CO ₂ and C ₂ F ₄
C ₇ F ₁₄	1300	0.4	1.6	Temporarily split into C_3F_5 and C_4F_9 and reformed into C_7F_{14} Split into CF_3 and C_6F_{11}
C_6F_{11}	1300	0.4	1.6	C_2F_4 detached within the first few moments and there is C_4F_7
C_4F_7	1300	0.4	1.6	Simulation failure
	1300	0.4	1.9	Simulation failure
	1300	0.4	2.2	Simulation failure
	1300	0.4	1.6	Simulation failure
	1300	0.2	1.6	Split into C ₂ F ₃ and C ₂ F ₄
C_2F_4	1300	0.2	1.6	Splits into 2 CF_2 and reformed into C_2F_4 and shortly after resulting in a simulation failure

Table S5. Total ΔG values (kJ \bullet mol $^{-1}$) of the reaction at different temperatures.

$C_8F_{15}O_2H$	$C_7F_{14} + CO_2 +$	$C_6F_{11} + CF_3 +$	$C_4F_7 + C_2F_4 +$	$C_2F_3 + 2 C_2F_4 +$
	HF	HF + CO ₂	$CF_3 + CO_2 + HF$	$CF_3 + CO_2 + HF$
0	186.44	287.23	397.56	580.66
0	150.96	232.04	320.95	484.59
0	115.31	176.73	244.30	388.48
0	79.66	121.59	167.86	292.63
0	44.10	66.69	91.71	197.15
0	8.70	12.01	15.94	102.09
0	-26.53	-42.38	-59.50	7.45
0	-61.63	-96.52	-134.56	-86.73
0	-96.52	-150.41	-209.24	-180.54
0	-131.29	-204.10	-283.68	-273.93
0	-165.90	-257.48	-357.77	-366.94
	0 0 0 0 0 0 0 0	HF 0 186.44 0 150.96 0 115.31 0 79.66 0 44.10 0 8.70 0 -26.53 0 -61.63 0 -96.52 0 -131.29	HF HF + CO ₂ 0 186.44 287.23 0 150.96 232.04 0 115.31 176.73 0 79.66 121.59 0 44.10 66.69 0 8.70 12.01 0 -26.53 -42.38 0 -61.63 -96.52 0 -96.52 -150.41 0 -131.29 -204.10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table S6. Total ΔG values (kJ \bullet mol $^{-1}$) of the recombination of CF $_3$ and C $_2$ F $_3$ to form C $_3$ F $_6$ at different temperatures.

Temperature (K)	C_3F_6
298	-404.86
398	-385.82
498	-366.84
598	-347.93
698	-329.11
798	-310.39
898	-291.76
998	-273.22
1098	-254.76
1198	-236.38
1298	-218.08