Supplementary information

Multicomponent Synthesis of Pyrido[2,3-*b*]pyrazine Derivatives: Electrochemical DNA Sensing, Nonlinear Optical Properties and Biological Activity

Muhammad Rashid^a, Muhammad Khalid^{b,c}, Abida Ashraf^{a,d}, Tahira Saleem^a, Iqra Shafiq^{b,c}

Muhammad Azeem Shakil^a, Briha Zainab^a, Attalla F. El-kott^{e,f}, Muhammad Yaqub^a and Zahid

Shafiq^a

^a Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan

^bInstitute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan

^cCentre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan

^dDepartment of Chemistry, Govt. Graduate College Shah Rukne- Alam Multan

^eDepartment of Biology, College of Science, King Khalid University, Abha, Saudi Arabia. ^fDepartment of Zoology, College of Science, Damanhour University, Egypt

Corresponding Authors

Dr. Muhammad Yaqub (<u>mayaqub2@yahoo.com</u>)

Dr. Zahid Shafiq (zahidshafiq@bzu.edu.pk, Tel. +92-3006559811)

Table of contents

1-	Optimization of reaction conditions for the synthesis of compound 7	Table S1
2-	Synthesized 2-aminopyrazine derived fused ring heterocyclic compounds	Table S2
	(4-7)	
3-	General mechanism for synthesis of (4-7)	Scheme S1
4-	NBO table of compound (4-7)	Table S3
5-	HOMO-1, LUMO+1, HOMO-2 and LUMO+2 of the studied compounds	Figure S1
	4-7	
6-	Computed energies (E) and energy gap $(E_{LUMO}-E_{HOMO})$ of HOMO and	Table S7
	LUMO of investigated compounds	
7-	Calculated energies (E) and energy gap (ΔE) of HOMO-1,	Table S8
	LUMO+1, HOMO-2 and LUMO+2 for D4-D7.	
8-	Global reactivity parameters of (4-7) compounds.	Table S9
9-	DOS graphs of 4-7 compounds	Figure S2
10	- DOS %age of HOMO and LUMO for 4-7 compounds	Table S10
11	- Absorption spectra of compounds 4-7 in gaseous phase	Figure S3
12	- UV-Visible analysis of compound 4-7	Table S11-S14
13	- Calculated vibrational frequencies of 4-7	Table S16-S19
14	- NPA graphs of 4-7 compounds	Figure S4
15	-Computed average polarizability $\langle \alpha \rangle$ dipole moment (μ_{tot}), first	Table S20
	hyperpolarizability (β tot) and second hyperpolarizability (γ_{tot}) of compound	nds 4-7 .
16	- Dipole polarizability and major contributing tensor (e.s.u.)	Table S21
	of the studied comp. 4-7.	
17	- Frequency dependent Second hyperpolarizability (e.s.u.)	Table S22
	of studied compounds 4-7	
18	- The computed first hyperpolarizability (β_{tot}) and major contributing	Table S23
10	Ersquanay dependent First hyperpolarizability (a s u)	Table \$24
17	of studied compound 4.7	1 avic 524
20	- Characterization by NMR & FTIR 4-7	
21	- In Vitro Antioxidant Activity of synthesized compounds (4-7)	Table S25
22	- Urease Inhibitory Activity of synthesized compounds (4-7)	Table S26

Entry	Solvent	Catalyst (mol %)	Time (h)	Yield ^a (%)
1	H ₂ O	No	24	b
2	H_2O	p-TsOH	24	b
3	Et-OH	Et ₃ N	24	35
4	Et-OH	L-Proline	24	45
5	Et-OH	AcOH	24	70
6	Et-OH	InCl ₃	12	60
7	Et-OH	H_2SO_4	09	46
8	Et-OH	p-TSA	09	89
9	CH ₃ CN	p-TSA	09	65
10	CH ₃ CN	L-Proline	09	72
11	DMF	p-TSA	09	55
12	THF	InCl ₃	09	45
13	CH_2Cl_2	p-TsOH	09	42
14	CH_2Cl_2	DABCO	09	Trace
^a Isolated yield		^b No proc	luct formed	

Table S1:Optimization of reaction conditions for the synthesis of compound 7.

 Table S2: Synthesized 2-aminopyrazine derived fused ring heterocyclic compounds (4-7).

Entry	Draduat	Ar CHO	Structure of Product	M.P.	Yield
Entry	TTouuci	Аг-СПО	(4-7)	(°C)	(%)
1	4	СНО	NH N O CHO	180	82

Scheme S1: General mechanism for synthesis of (4-7).

Donor(<i>i</i>)	Type	Acceptor(i)	Type	<i>E</i> (2) ^a	<i>E</i> (J)E(i) ^b	F(i.i) ^c
C13-	- , PV		-740	-(=)		- (-) J /
N32	π	C28-C30	π^*	24.07	0.34	0.081
C16-		020 000		2	0101	0.001
C18	π	C21-C23	π^*	23.4	0.28	0.072
C17-						
C19	π	C16-C18	π^*	22.14	0.29	0.072
C2-C3	π	C4-C5	π^*	21.31	0.29	0.07
C12-						,
N33	π	C28-C30	π^*	21.5	0.33	0.075
C28-						
C30	π	C12-N33	π^*	20.4	0.28	0.067
C12-						
N33	π	C13-N32	π^*	19.15	0.3	0.07
C4-C5	π	C1-C6	π^*	18.91	0.29	0.067
C13-						
N32	π	C12-N33	π^*	15.82	0.33	0.065
C2-C3	π	C26-O27	π^*	14.83	0.29	0.06
C14-						
C15	π	C4-C5	π^*	13.66	0.3	0.06
C37-						
O38	π	C21-C23	π^*	5.09	0.41	0.045
C26-						
O27	π	C14-C15	π^*	4.63	0.4	0.041
C5-C6	σ	C4-C14	σ^*	5.82	1.15	0.073
С5-Н9	σ	C3-C4	σ^*	4.69	1.09	0.064
C3-C26	σ	C4-C5	σ^*	4.35	1.2	0.065
C5-C6	σ	C4-C5	σ^*	4.04	1.28	0.064
C37-						
H39	σ	C19-C23	σ^*	3.98	1.1	0.059
C11-						
C12	σ	C30-N33	σ*	3.74	1.15	0.059
C19-				• • • •		
C23	σ	C17-C19	σ*	3.16	1.28	0.057
CII-		G12 1/22	ste	2 01	1 1 4	0.051
C12	σ	C13-N32	σ*	2.81	1.14	0.051
C21-	_	C10 1124	_*	2 21	1 1 5	0.045
C23	σ	C19-H24	σ*	2.21	1.15	0.045
C15-	-	C11 C15	-*	2 1 2	1.07	0.042
C20 C11	σ	011-015	0.4	2.13	1.0/	0.042
C16	G	C16-C18	ح *	1 00	1 10	0.044
C13-	0	010-010	U	1.77	1.17	0.044
N34	σ	C12-C13	σ *	1.58	1.33	0.041

 Table S3: NBO table of compound 4.

		1 -				
O38	LP(1)	C37-H39	σ*	0.51	1.06	0.021
O38	LP(1)	C23-C37	σ*	1.91	1.14	0.042
O27	LP(2)	C15-C26	σ*	19.12	0.72	0.106
N34	LP(1)	C13-N32	π^*	42.85	0.27	0.098
C2-H8	σ	C1-C2	σ*	0.56	1.07	0.022
C6-H10	σ	С5-Н9	σ*	0.64	0.95	0.022
C3-C4	σ	C3-C26	σ*	1.03	1.09	0.03
N33	σ	C30-N33	σ*	1.33	1.38	0.038
C12-						
C17	σ	C17-H20	σ*	1.36	1.14	0.035
C16-						
N32	σ	C30-H31	σ*	1.44	1.27	0.038
C28-						

Table S4: NBO table of compound 5.

Donor(<i>i</i>)	Туре	Acceptor(j)	Туре	E(2) ^a	E(J)E(i) ^b	F(i,j) ^c
C13-N32	π	C28-C30	π*	24.11	0.34	0.081
C16-C17	π	C19-C23	π^*	22.47	0.27	0.07
C18-C21	π	C19-C23	π^*	21.79	0.27	0.069
C12-N33	π	C28-C30	π^*	21.55	0.32	0.075
C2-C3	π	C4-C5	π^*	21.32	0.29	0.07
C4-C5	π	C2-C3	π^*	17.97	0.31	0.067
C1-C6	π	C4-C5	π^*	18.14	0.29	0.065
C2-C3	π	C1-C6	π^*	18.69	0.28	0.066
C19-C23	π	C18-C21	π^*	19.45	0.3	0.069
C16-C17	π	C18-C21	π^*	20.27	0.29	0.068
C28-C30	π	C13-N32	π^*	17.73	0.26	0.062
C14-C15	π	C4-C5	π^*	13.78	0.3	0.06
C26-O27	π	C14-C15	π^*	4.64	0.4	0.041
C26-O27	π	C2-C3	π^*	4.31	0.41	0.04
C14-C15	π	C14-C15	π^*	3.01	0.31	0.028
C30-H31	σ	C12-N33	σ*	5.16	1.07	0.066
C4-C14	σ	C11-C15	σ*	4.77	1.08	0.064
C21-H25	σ	C19-C23	σ*	4.46	1.08	0.062
C30-N33	σ	C11-C12	σ*	4.02	1.22	0.063
C30-H31	σ	C28-N32	σ*	3.98	1.06	0.058
C13-N32	σ	C12-C13	σ*	3.66	1.37	0.064
C11-C15	σ	C4-C14	σ*	2.96	1.07	0.05
C13-N34	σ	C28-N32	σ*	2.43	1.34	0.051
C11-C12	σ	C12-N33	σ*	2.04	1.16	0.044
C12-C13	σ	N34-H35	σ*	1.99	1.11	0.042
C11-C16	σ	C11-C12	σ*	1.46	0.99	0.034
C16-C18	σ	C11-C12	σ*	1.27	1.07	0.033

C5-C6	σ	С5-Н9	σ*	1.07	1.12	0.031
C26-O27	σ	C14-C15	σ*	0.55	1.68	0.027
C12-C13	σ	C11-C16	σ*	0.51	1.13	0.022
C3-C26	σ	C14-N34	σ*	0.5	1.08	0.021
N34	LP(1)	C13-N32	π^*	42.78	0.27	0.098
C137	LP(3)	C19-C23	π^*	12.03	0.33	0.062
C137	LP(1)	C21-C23	σ*	1.61	1.48	0.044
N33	LP(1)	C13-N34	σ^*	0.52	0.76	0.018

 Table S5: NBO table of compound 6.

Donor(t)TypeAcceptor(t)Type $E(2)^{\alpha}$ $E(3)E(1)^{\beta}$ $F(i,j)^{c}$ C14- C15 π C26-O27 π^{*} 25.90.30.079C16- C17 π C19-C23 π^{*} 24.580.270.074C13- N32 π C28-C30 π^{*} 24.10.340.081C18- C21 π C16-C17 π^{*} 22.660.290.072C12- N33 π C28-C30 π^{*} 21.370.330.075C16- C17 π C18-C21 π^{*} 17.730.290.065C13- N32 π C12-N33 π^{*} 15.880.330.059C14- C15 π C14-C15 π^{*} 14.140.30.059C14- C15 π C4-C5 π^{*} 13.520.310.059N37- O39 π N37-O39 π^{*} 4.620.410.04N37- O39 π C19-C23 π^{*} 4.110.460.043C26- O27 π C1-C15 π^{*} 3.110.310.028C14- C15 π^{*} 3.110.310.0280.041C26- O27 π C14-C15 π^{*} 3.110.310.028C14- C15 π^{*} 3.110.310.0280.041C26- O27 π C14-C15 π^{*} 3.991.090.059C14- C15 π^{*} 3.991.080.0640.0410		T		T			
C14- C15 π C26-O27 π^* 25.9 0.3 0.079 C16- C17 π C19-C23 π^* 24.58 0.27 0.074 C13- C13- N32 π C28-C30 π^* 24.1 0.34 0.081 C18- C21 π C16-C17 π^* 22.66 0.29 0.072 C12- N33 π C28-C30 π^* 21.37 0.33 0.075 C16- C17 π C18-C21 π^* 17.73 0.29 0.065 C13- N32 π C12-N33 π^* 15.88 0.33 0.065 C4-C5 π C14-C15 π^* 14.14 0.3 0.059 C14- C15 π C4-C5 π^* 13.52 0.31 0.059 N37- O39 π C14-C15 π^* 4.62 0.4 0.041 C26- O27 π C14-C15 π^* 4.11 0.46 0.043 C14- C15 π^* C14-C15 π^* 3.11 0.31 0.028 C14-	Donor(i)	Туре	Acceptor(j)	Туре	E(2) ^a	E(J)E(i) ^b	F(i,j) ^c
C15 C17 π C19-C23 π^* 24.580.270.074C13- N32 π C28-C30 π^* 24.10.340.081C18- C21 π C16-C17 π^* 22.660.290.072C12- N33 π C28-C30 π^* 21.370.330.075C16- C17 π C18-C21 π^* 17.730.290.065C13- N32 π C12-N33 π^* 15.880.330.065C4-C5 π C14-C15 π^* 14.140.30.059C14- C15 π C4-C5 π^* 13.520.310.059N37- O39 π N37-O39 π^* 7.550.320.053C26- O27 π C14-C15 π^* 4.620.410.04N37- O39 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C14- C15 π C14-C15 π^* 3.991.090.059C14- C4-C14 σ C11-C15 σ^* 3.991.090.059C14- C4-C14 σ C11-C15 σ^* 2.941.180.053	C14-	π	C26-O27	π^*	25.9	0.3	0.079
C16- C17 π C19-C23 π^* 24.580.270.074C13- N32 π C28-C30 π^* 24.10.340.081C18- C21 π C16-C17 π^* 22.660.290.072C12- N33 π C28-C30 π^* 21.370.330.075C16- C17 π C18-C21 π^* 17.730.290.065C13- N32 π C12-N33 π^* 15.880.330.065C4-C5 π C14-C15 π^* 14.140.30.059C14- C15 π C4-C5 π^* 13.520.310.059N37- O39 π N37-O39 π^* 7.550.320.053C26- O27 π C14-C15 π^* 4.620.410.04N37- O39 π C19-C23 π^* 4.110.460.043C14- C15 π^* 0.780.280.014C26- O27 π C14-C15 π^* 3.110.310.028C14- C15 π^* 0.780.280.014C4- C4- C15 π^* 3.991.090.059C14- C15 π C14-C15 π^* 3.991.090.059C14- C15 σ C14-C15 σ^* 3.991.090.059C14- C15 σ C14-C18 σ^* 2.941.180.053							
C17 N32 π C28-C30 π^* 24.10.340.081C18- C21 π C16-C17 π^* 22.660.290.072C12- N33 π C28-C30 π^* 21.370.330.075C16- C17 π C18-C21 π^* 17.730.290.065C13- N32 π C12-N33 π^* 15.880.330.065C4-C5 π C14-C15 π^* 14.140.30.059C14- C15 π C4-C5 π^* 13.520.310.059C14- C15 π C14-C15 π^* 4.620.40.041C26- O27 π C2-C3 π^* 4.290.410.04N37- O39 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C14- C15 π C14-C15 π^* 3.110.310.028C14- C15 π C14-C15 π^* 3.991.090.059C14- C15 σ C11-C15 σ^* 3.991.090.059C14- C14- C15 σ C14-C18 σ^* 3.991.090.059	C10-	π	C19-C23	π^*	24.58	0.27	0.074
C13- N32 π C28-C30 π^* 24.10.340.081C18- C21 π C16-C17 π^* 22.660.290.072C12- N33 π C28-C30 π^* 21.370.330.075C16- C17 π C18-C21 π^* 17.730.290.065C13- N32 π C12-N33 π^* 15.880.330.065C4-C5 π C14-C15 π^* 14.140.30.059C14- C15 π C4-C5 π^* 13.520.310.059C15- C15 π C14-C15 π^* 4.620.40.041C26- O27 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C14- C15 π C14-C15 π^* 3.110.310.028C14- C15 π C14-C15 π^* 3.991.090.059C14- C15 σ C14-C15 σ^* 3.991.090.059C14- C15 σ C16-C18 σ^* 3.991.090.059	C17						
C18- C21 π C16-C17 π^* 22.660.290.072C12- N33 π C28-C30 π^* 21.370.330.075C16- C17 π C18-C21 π^* 17.730.290.065C13- N32 π C12-N33 π^* 15.880.330.065C4-C5 π C14-C15 π^* 14.140.30.059C14- C15 π C4-C5 π^* 13.520.310.059N37- O39 π N37-O39 π^* 7.550.320.053C26- O27 π C19-C23 π^* 4.290.410.04N37- O39 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C14- C17 π C14-C15 π^* 3.991.090.059C14- C15 π C14-C15 π^* 0.780.280.014C4-C14 σ C11-C15 σ^* 3.991.090.059C14- C15 σ C16-C18 σ^* 3.991.090.059C14- C15 σ C16-C18 σ^* 2.941.180.053	N32	π	C28-C30	π^*	24.1	0.34	0.081
C10 π C16-C17 π^* 22.660.290.072C12- N33 π C28-C30 π^* 21.370.330.075C16- C17 π C18-C21 π^* 17.730.290.065C13- N32 π C12-N33 π^* 15.880.330.065C4-C5 π C14-C15 π^* 14.140.30.059C14- C15 π C4-C5 π^* 13.520.310.059N37- O39 π N37-O39 π^* 7.550.320.053C26- O27 π C14-C15 π^* 4.620.410.04N37- O39 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C16- C17 π C14-C15 π^* 3.991.090.059C14- C15 σ C16-C18 σ^* 3.991.090.059	C18-						
C12- N33 π C28-C30 π^* 21.370.330.075C16- C17 π C18-C21 π^* 17.730.290.065C13- N32 π C12-N33 π^* 15.880.330.065C4-C5 π C14-C15 π^* 14.140.30.059C14- C15 π C4-C5 π^* 13.520.310.059C14- C15 π C4-C5 π^* 13.520.310.059N37- O39 π N37-O39 π^* 7.550.320.053C26- O27 π C14-C15 π^* 4.620.40.041C26- O27 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C14- C15 π C14-C15 π^* 3.991.090.059C14- C15 σ C11-C15 σ^* 3.991.090.059C14- C15 σ C16-C18 σ^* 3.991.090.059C14- C15 σ C16-C18 σ^* 3.991.090.059	C21	π	C16-C17	π^*	22.66	0.29	0.072
N33 C16- C17 π C28-C30 π^* 21.370.330.075C16- C17 π C18-C21 π^* 17.730.290.065C13- N32 π C12-N33 π^* 15.880.330.065C4-C5 π C14-C15 π^* 14.140.30.059C14- C15 π C4-C5 π^* 13.520.310.059N37- O39 π N37-O39 π^* 7.550.320.053C26- O27 π C14-C15 π^* 4.620.40.041C26- O27 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C14- C15 π C14-C15 π^* 3.110.310.028C14- C15 π C14-C15 π^* 3.991.090.059C14- C15 σ C14-C15 σ^* 3.991.090.053	C12-						
C16- C17 π C18-C21 π^* 17.730.290.065C13- N32 π C12-N33 π^* 15.880.330.065C4-C5 π C14-C15 π^* 14.140.30.059C14- C15 π C4-C5 π^* 13.520.310.059N37- O39 π N37-O39 π^* 7.550.320.053C26- O27 π C14-C15 π^* 4.620.40.041C26- O27 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C14- C15 π C14-C15 π^* 3.110.310.028C16- C17 π C14-C15 π^* 3.991.090.059C16- C17 π C16-C18 σ^* 3.991.090.059C14- C21- C42- σ C16-C18 σ^* 3.991.090.059	N33	π	C28-C30	π^*	21.37	0.33	0.075
C17 π C18-C21 π^* 17.730.290.065C13- N32 π C12-N33 π^* 15.880.330.065C4-C5 π C14-C15 π^* 14.140.30.059C14- C15 π C4-C5 π^* 13.520.310.059N37- O39 π N37-O39 π^* 7.550.320.053C26- O27 π C14-C15 π^* 4.620.40.041C26- O27 π C2-C3 π^* 4.290.410.04N37- O39 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C14- C15 π C14-C15 π^* 3.991.080.064C21- H25 σ C16-C18 σ^* 3.991.090.059C14- C14- C14- σ C14-N34 σ^* 2.941.180.053	C16-						
C13- N32 π C12-N33 π^* 15.880.330.065C4-C5 π C14-C15 π^* 14.140.30.059C14- C15 π C4-C5 π^* 13.520.310.059N37- O39 π N37-O39 π^* 7.550.320.053C26- O27 π C14-C15 π^* 4.620.40.041C26- O27 π C2-C3 π^* 4.290.410.04N37- O39 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C14- C15 π C14-C15 π^* 3.110.310.028C16- C17 π C14-C15 π^* 3.991.090.059C14- C21- C21- C3 π C16-C18 σ^* 3.991.090.059C14- C15 π C16-C18 σ^* 2.941.180.053	C17	π	C18-C21	π^*	17.73	0.29	0.065
N32 π C12-N33 π^* 15.880.330.065C4-C5 π C14-C15 π^* 14.140.30.059C14- C15 π C4-C5 π^* 13.520.310.059N37- O39 π N37-O39 π^* 7.550.320.053C26- O27 π C14-C15 π^* 4.620.40.041C26- O27 π C2-C3 π^* 4.290.410.04N37- O39 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C16- C17 π C14-C15 π^* 0.780.280.014C4-C14 σ C11-C15 σ^* 4.821.080.064C21- H25 σ C16-C18 σ^* 3.991.090.059C14- C14- σ C14-N34 σ^* 2.941.180.053	C13-		C12 N22	*	15 00	0.22	0.065
C4-C5 π C14-C15 π^* 14.140.30.059C14- C15 π C4-C5 π^* 13.520.310.059N37- O39 π N37-O39 π^* 7.550.320.053C26- O27 π C14-C15 π^* 4.620.40.041C26- O27 π C2-C3 π^* 4.290.410.04N37- O39 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C16- C17 π C14-C15 π^* 0.780.280.014C4-C14 σ C11-C15 σ^* 4.821.080.064C21- H25 σ C16-C18 σ^* 3.991.090.059C14- C14- σ C14-N34 σ^* 2.941.180.053	N32	π	C12-N33	π^*	15.88	0.33	0.065
C14- C15 π C4-C5 π^* 13.520.310.059N37- O39 π N37-O39 π^* 7.550.320.053C26- O27 π C14-C15 π^* 4.620.40.041C26- O27 π C2-C3 π^* 4.290.410.04N37- O39 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C16- C17 π C14-C15 π^* 0.780.280.014C4-C14 σ C11-C15 σ^* 4.821.080.064C21- H25 σ C16-C18 σ^* 3.991.090.059C14- C14- σ C14-N34 σ^* 2.941.180.053	C4-C5	π	C14-C15	π^*	14.14	0.3	0.059
C15 π C4-C3 π^* 13.320.310.039N37- O39 π N37-O39 π^* 7.550.320.053C26- O27 π C14-C15 π^* 4.620.40.041C26- O27 π C2-C3 π^* 4.290.410.04N37- O39 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C16- C17 π C14-C15 π^* 0.780.280.014C4-C14 σ C11-C15 σ^* 4.821.080.064C21- H25 σ C16-C18 σ^* 3.991.090.059C14- C14- C14- σ C14-N34 σ^* 2.941.180.053	C14-	_	CAC5	_*	12.50	0.21	0.050
N37- O39 π N37-O39 π^* 7.550.320.053C26- O27 π C14-C15 π^* 4.620.40.041C26- O27 π C2-C3 π^* 4.290.410.04N37- O39 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C16- C17 π C14-C15 π^* 0.780.280.014C4-C14 σ C11-C15 σ^* 4.821.080.064C21- H25 σ C16-C18 σ^* 3.991.090.059C14- C14- σ C14-N34 σ^* 2.941.180.053	C15	π	04-05	π	15.52	0.31	0.039
039 π $n37-039$ π^* 7.33 0.32 0.033 C26- 027 π C14-C15 π^* 4.62 0.4 0.041 C26- 027 π C2-C3 π^* 4.29 0.41 0.04 N37- 039 π C19-C23 π^* 4.11 0.46 0.043 C14- C15 π C14-C15 π^* 3.11 0.31 0.028 C16- C17 π C14-C15 π^* 0.78 0.28 0.014 C4-C14 σ C11-C15 σ^* 4.82 1.08 0.064 C21- H25 σ C16-C18 σ^* 3.99 1.09 0.059 C14- C14- σ C14-N34 σ^* 2.94 1.18 0.053	N37-	-	N27 O20	~ *	7 55	0.22	0.053
C26- 027 π C14-C15 π^* 4.620.40.041C26- 027 π C2-C3 π^* 4.290.410.04N37- 039 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C16- C17 π C14-C15 π^* 0.780.280.014C4-C14 σ C11-C15 σ^* 4.821.080.064C21- H25 σ C16-C18 σ^* 3.991.090.059C14- C15 σ C14-N34 σ^* 2.941.180.053	O39	л	N37-039		1.55	0.32	0.055
027 π $C14 C15$ π 1.02 0.41 0.041 $C26$ π $C2-C3$ π^* 4.29 0.41 0.04 $N37$ - σ $C19-C23$ π^* 4.11 0.46 0.043 $C14$ - $C15$ π $C19-C23$ π^* 4.11 0.46 0.043 $C14$ - $C15$ π $C19-C23$ π^* 4.11 0.46 0.043 $C14$ - $C15$ π $C14-C15$ π^* 3.11 0.31 0.028 $C16$ - $C16$ - $C14-C15$ π^* 0.78 0.28 0.014 $C4-C14$ σ $C11-C15$ σ^* 4.82 1.08 0.064 $C21$ - σ $C16-C18$ σ^* 3.99 1.09 0.059 $C14$ - σ $C14-N34$ σ^* 2.94 1.18 0.053	C26-	π	C14-C15	π^*	4 62	04	0.041
C26- 027 π C2-C3 π^* 4.290.410.04N37- 039 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C16- C17 π C14-C15 π^* 0.780.280.014C4-C14 σ C11-C15 σ^* 4.821.080.064C21- H25 σ C16-C18 σ^* 3.991.090.059C14- C14- σ C14-N34 σ^* 2.941.180.053	O27	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	014 015	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7.02	0.4	0.041
027 π 0202 π 1.23 0.11 0.01 N37- O39 π $C19-C23$ π^* 4.11 0.46 0.043 C14- C15 π C14-C15 π^* 3.11 0.31 0.028 C16- C17 π C14-C15 π^* 0.78 0.28 0.014 C4-C14 σ C11-C15 σ^* 4.82 1.08 0.064 C21- H25 σ C16-C18 σ^* 3.99 1.09 0.059 C14- C15 σ C14-N34 σ^* 2.94 1.18 0.053	C26-	π	C2-C3	π^*	4.29	0.41	0.04
N37- O39 π C19-C23 π^* 4.110.460.043C14- C15 π C14-C15 π^* 3.110.310.028C16- C17 π C14-C15 π^* 0.780.280.014C4-C14 σ C11-C15 σ^* 4.821.080.064C21- H25 σ C16-C18 σ^* 3.991.090.059C14- C15 σ C14-N34 σ^* 2.941.180.053	027		02 00			0.11	0.01
0.39 $C14$ - C15 π 3.11 0.31 0.028 C16- C17 π C14-C15 π^* 0.78 0.28 0.014 C4-C14 σ C11-C15 σ^* 4.82 1.08 0.064 C21- H25 σ C16-C18 σ^* 3.99 1.09 0.059 C14- C15 σ C14-N34 σ^* 2.94 1.18 0.053	N37-	π	C19-C23	π^*	4.11	0.46	0.043
C14- C15 π C14-C15 π^* 3.110.310.028C16- C17 π C14-C15 π^* 0.780.280.014C4-C14 σ C11-C15 σ^* 4.821.080.064C21- H25 σ C16-C18 σ^* 3.991.090.059C14- C15 σ C14-N34 σ^* 2.941.180.053	039						
C13 C16- C17 π C14-C15 π^* 0.780.280.014C4-C14 σ C11-C15 σ^* 4.821.080.064C21- H25 σ C16-C18 σ^* 3.991.090.059C14- C15 σ C14-N34 σ^* 2.941.180.053	C14-	π	C14-C15	π^*	3.11	0.31	0.028
C10- C17 π C14-C15 π^* 0.780.280.014C4-C14 σ C11-C15 σ^* 4.821.080.064C21- H25 σ C16-C18 σ^* 3.991.090.059C14- C15 σ C14-N34 σ^* 2.941.180.053	C15 C16						
C17 σ C11-C15 σ^* 4.821.080.064C21- H25 σ C16-C18 σ^* 3.991.090.059C14- C15 σ C14-N34 σ^* 2.941.180.053	C10-	π	C14-C15	π^*	0.78	0.28	0.014
C21- H25 σ C16-C18 σ^* 3.991.090.059C14- C15 σ C14-N34 σ^* 2.941.180.053	C_{1}	G	C11-C15	ح*	1 87	1.08	0.064
σ C16-C18 σ^* 3.991.090.059C14- σ C14-N34 σ^* 2.941.180.053	C^{21}	U	011-015	0	4.02	1.00	0.004
C14- σ C14-N34 σ * 2.94 1.18 0.053	H25	σ	C16-C18	σ^*	3.99	1.09	0.059
σ C14-N34 σ * 2.94 1.18 0.053	C14-						
	C15	σ	C14-N34	σ^*	2.94	1.18	0.053

C14-	σ	C15-C26	ح*	1 99	1 1 9	0 044
C15	0	015-020	0	1.77	1.17	0.044
C3-C26	σ	C3-C4	σ*	1.83	1.18	0.041
C12-	б	C30-N33	ح*	1 33	1 38	0.038
N33	0	050-1155	0	1.55	1.50	0.058
C11-	σ	C12-C13	σ*	12	1 1 1	0.033
C16	Ū	012 015	0	1.2	1.11	0.055
C17-	σ	C17-H20	σ*	1 1 5	1 1 5	0.033
C19	0	017 1120	0	1.10	1.10	0.055
N37-	σ	C23-N37	σ*	1	1.37	0.034
O39	U U		J.	-	1.07	0.021
C5-C6	σ	C6-H10	σ^*	0.92	1.14	0.029
C12-	σ	C11-C15	σ*	0.83	1.27	0.029
N33	U U		0	0.02	1.27	0.02
C23-	σ	C19-C23	σ*	0.79	1.36	0.029
N37	Ū.	017 020				0.023
C3-C26	σ	C15-C26	σ^*	0.72	1.08	0.025
C1-H7	σ	C1-C6	σ^*	0.69	1.1	0.025
C17-	σ	C19-H24	σ*	0.62	0.97	0.022
H20	0	017 112 1	0	0.02	0.97	0.022
C26-	σ	C14-C15	σ*	0.55	1 67	0.027
O27	0	011 015	0	0.55	1.07	0.027
C12-	σ	C11-C16	σ*	0.53	1 12	0.022
C13	0	011 010	0	0.25	1.12	0.022
N34	LP(1)	C14-C15	π^*	43.94	0.32	0.108
N34	LP(1)	C13-N32	π^*	42.82	0.27	0.098
O39	LP(2)	C18-C21	σ*	0.54	0.86	0.02
N33	LP(1)	C13-N34	σ*	0.52	0.76	0.018

 Table S6: NBO table of compound 7.

Donor(<i>i</i>)	Туре	Acceptor(j)	Туре	<i>E</i> (2) ^a	E(J)E(i) ^b	F(i,j) ^c
C13- N32	П	C28-C30	π^*	23.94	0.34	0.08
C16- C18	П	C17-C19	π^*	21.98	0.28	0.07
C28- C30	П	C12-N33	π^*	19.59	0.28	0.066
C2-C3	Π	C1-C6	π^*	18.86	0.28	0.066
C28- C30	П	C13-N32	π^*	17.54	0.26	0.062
C21- C23	П	C17-C19	π^*	16.89	0.3	0.063
C13- N32	П	C12-N33	π^*	15.65	0.33	0.065
C2-C3	Π	C26-O27	π^*	14.38	0.29	0.06

C4-C5	П	C14-C15	π^*	13.74	0.3	0.058
C26- O27	П	C14-C15	π^*	4.68	0.4	0.041
C26- O27	П	C2-C3	π^*	4.39	0.41	0.04
C14- C15	П	C14-C15	π*	2.97	0.31	0.028
C5-C6	Σ	C4-C14	σ*	5.79	1.15	0.073
C30- H31	Σ	C12-N33	α_*	5.14	1.08	0.066
C1-C2	Σ	C3-C26	σ*	4.97	1.11	0.067
C3-C26	Σ	C4-C5	σ^*	4.38	1.2	0.065
C18- C21	Σ	C16-C18	σ*	4	1.28	0.064
C21- C23	Σ	C18-C21	σ*	3.44	1.29	0.06
C14- C15	Σ	C14-N34	α_*	2.99	1.18	0.053
C2-C3	Σ	C4-C14	σ*	2.16	1.16	0.045
C14- N34	Σ	C13-N32	σ*	1.99	1.37	0.047
C28- N32	Σ	C28-C30	σ*	1.53	1.39	0.041
C11- C15	Σ	C11-H36	σ*	0.98	1.04	0.029
C14- C15	Σ	C11-C16	α_*	0.64	1.13	0.024
N34	LP(1)	C13-N32	π^*	42.55	0.27	0.098
O37	LP(2)	C21-C23	π^*	30.25	0.34	0.097
O27	LP(2)	C15-C26	σ^*	19.48	0.72	0.107
N32	LP(1)	C12-C13	σ*	10.78	0.87	0.087
O37	LP(1)	C21-C23	σ*	7.16	1.11	0.08
N32	LP(1)	C13-N34	σ*	4.73	0.78	0.055
O37	LP(1)	C38-H40	σ*	3.04	0.94	0.048
N33	LP(1)	C13-N34	σ*	0.52	0.76	0.018

D6

Figure S1: HOMO-1, LUMO+1, HOMO-2 and LUMO+2 of the studied compounds 4 to 7.

Table S7: Computed energies (E) and energy gap (E_{LUMO} - E_{HOMO}) of HOMO and LUMO of	f
investigated compounds in eV.	

Compounds	E _{HOMO}	$E_{\rm LUMO}$	$E_{ m gap}$
4	-6.131	-2.665	3.466
5	-6.068	-2.604	3.646
6	-6.261	-2.789	3.472
7	-5.858	-2.414	3.444

Table S8: Calculated energies (*E*) and energy gap (ΔE) of HOMO-1, LUMO+1, HOMO-2 and LUMO+2 for **D4-D7**.

Comp.	HOMO-	LUMO+1	ΔE	HOMO-	LUMO+2	ΔE
	1			2		
D4	-6.967	-1.895	5.072	-6.978	-1.765	5.213
D5	-6.647	-1.848	4.799	-7.052	-1.04	6.012
D6	-7.192	-2.377	4.815	-7.306	-2.028	5.278
D7	-5.965	-2.414	3.551	-6.834	0.867	5.967

 Table S9: Global reactivity parameters of (4-7) compounds.

Comp.	IP	EA	X	η	μ	ω	σ	ΔN_{max}
D4	6.131	2.665	4.398	1.733	-4.398	5.580	0.288	2.537
D5	6.068	2.604	4.336	1.732	-4.336	5.427	0.288	2.503
D6	6.261	2.789	4.525	1.736	-4.525	5.897	0.288	2.606
D7	5.858	2.414	4.136	1.722	-4.136	4.967	0.290	2.401

Figure S2: DOS graphs of 4-7 compounds.

HOMO DOS %age						
Compounds	Fragment 1	Fragment 2				
4	94.7	5.3				
5	92.7	7.3				
6	95.3	4.7				
7	52.6	47.4				
	LUMO DOS %a	nge				
Compounds	Fragment 1	Fragment 2				
4	97.3	2.7				
5	99.0	1.0				
6	92.9	7.1				
7	99.5	0.5				

 Table S10: DOS %age of HOMO and LUMO for 4-7 compounds.

Figure S3: Absorption spectra of compounds 4-7 in gaseous phase.

Table S11: Transition energy (*E*), maximum absorption wavelength (λ_{max}), oscillator strength

1	$c \rightarrow$	1	•	•.•		0 1 1	1	/ / .	- N
1	ŧι	ond	100101	trongition	aontributiona	of offidiad	aamnaunda	11 '	/ \
		анс	ппатон	IT ATISTITOTI	COULTINITIONS	OF STRUCTED			/ 1
1	OSI	, und	inajoi	uanonion	contributions	or braarea	compounds		· · ·
•	00)	·					1		

Comp.	DFT λ (nm)	E(eV)	f	MO contributions
4	323.693	3.830	0.083	$H-3 \rightarrow L$ (26%), $H-2 \rightarrow L$ (11%), $H-1 \rightarrow L$ (26%),
				$H \rightarrow L+2$ (29%), $H-5 \rightarrow L$ (2%), $H-4 \rightarrow L$ (4%)
5	310.131	3.998	0.092	H-4→L (23%), H-3→L (46%), H-2→L (10%), H-
				6→L (2%), H-5→L (8%), H-5→L+1 (2%),
				H→L+2 (5%)
6	315.417	3.931	0.152	H-2→L (90%), H-1→L (2%)
7	443.704	2.794	0.031	H-1→L (10%), H→L (87%),

MO=molecular orbital; H=HOMO, L=LUMO

Ν	DFT	E(eV)	f	MO contributions
0	λ (nm)			
1	445.68	2.782	0.034	H→L (97%),
	2			
2	396.07	3.130	0.000	H-4→L (10%), H-3→L (33%), H-1→L (48%), H-
	8			5→L (3%)
3	348.96	3.553	0.021	$H \rightarrow L + 1 (98\%),$
	6			
4	339.22	3.655	0.000	H-2→L (24%), H-2→L+2 (60%), H-2→L+8 (2%), H-
	7			1→L+2 (8%)
5	330.07	3.756	0.010	H-3→L (18%), H-1→L (11%), H→L+2 (66%),
	9			

6	323.69	3.830	0.083	H-3→L (26%), H-2→L (11%), H-1→L (26%),
	3			H→L+2 (29%), H-5→L (2%), H-4→L (4%)

Ν	DFT	E(eV)	f	MO contributions
0	λ (nm)		U	
1	445.76	2.781	0.034	H→L (97%),
	2			
2	396.31	3.128	0.001	H-2→L (68%), H-1→L (18%), H-3→L (9%)
	8			
3	352.44	3.518	0.023	H-2→L (13%), H-1→L (60%), H→L+1 (26%),
	8			
4	349.57	3.547	0.026	H-1→L (21%), H→L+1 (73%), H-2→L (4%)
	6			
5	310.13	3.998	0.092	H-4→L (23%), H-3→L (46%), H-2→L (10%), H-
	1			6→L (2%), H-5→L (8%), H-5→L+1 (2%), H→L+2
				(5%)
6	307.44	4.033	0.007	$H-5 \rightarrow L (64\%), H-5 \rightarrow L+1 (17\%), H-3 \rightarrow L (13\%),$
	7			

Table S13: UV-Visible analysis of compound 5.

Table S14: UV-Visible analysis of compound 6.

Ν	DFT	E(eV)	f	MO contributions
0	λ (nm)			
1	444.73	2.788	0.034	H→L (97%),
	8			
2	393.93	3.147	0.000	H-1→L (86%), H-5→L (3%), H-1→L+1 (3%)
	8			
3	368.34	3.366	0.015	H→L+1 (98%),
	3			
4	349.23	3.550	0.022	H→L+2 (98%),
	2			
5	323.68	3.830	0.000	H-7→L (10%), H-7→L+1 (85%), H-7→L+6 (3%)
	5			
6	315.41	3.931	0.152	H-2→L (90%), H-1→L (2%)
	7			

Table S15: UV-Visible analysis of compound 7.

N O	DFT λ (nm)	E(eV)	f	MO contributions
1	443.70	2.794	0.031	H-1→L (10%), H→L (87%),
	4			
2	420.12	2.951	0.018	H-2→L (11%), H-1→L (75%), H-3→L (4%), H→L

	9			(8%)
3	390.85	3.172	0.008	H-3→L (23%), H-2→L (54%), H-1→L (13%), H-
	8			$4 \rightarrow L (3\%), H \rightarrow L (4\%)$
4	347.72	3.566	0.007	H→L+1 (94%), H-1→L+1 (4%)
	3			
5	335.53	3.695	0.033	H-1→L+1 (93%), H→L+1 (4%)
	7			
6	319.39	3.882	0.008	H-3→L (69%), H-2→L (28%),
	0			

 Table S16: Calculated vibrational frequencies of 4.

^a Freq	$^{a}I_{IR}$	EXP	Vibrational assignments
3614	66		υ(N-H)
3194	20	3214	v(s) C-H _{Ben}
3185	10		$v(s) + v(as) C-H_{Ben}$
3186	6		$v(as) C-H_{Ben}$
2873	162	2894	υ (C-H-O)
1778	301		υ(C-O)
1664	71	1660	υ (C=C-C=C _{Ben}) + υ (C-O)
1585	24		υ (C=N-C=N _{pyr}) + (ρ) C-H _{pyr} + υ (C-O)
1544	327	1566	$\upsilon(C-O) + \upsilon(C-H)$
1474	86		$(\rho + \delta)$ C-H _{Ben} + (ρ) C-H _{pyr}
1435	359		υ (C-N) + (ρ) C-H _{Ben} + υ (C-C)
1357	34		$(\rho) \text{ C-H}_{\text{pry}} + \gamma (\text{C-H}_{\text{Ben}})$
1335	24		(ρ) C-H _{Ben}
1233	61		$(\rho + \delta)$ C-H _{Ben}
1197	121		$(\rho + \delta)$ C-H _{Ben}
1090	14		$(\rho + \delta)$ C-H _{Ben} + (δ) C-H _{pyr}
944	13		$\upsilon (C=N-C=N_{pyr}) + \gamma (C-H_{pry})$
892	54	843	(ρ) C-H _{Ben} + (ρ) (N-H) + γ (C-H-O)
771	38		(w) C-H _{Ben}
619	16		(w) C-H _{Ben} + (ρ) C-H _{Ben}

Table S17:	Calculated	vibrational	frea	uencies	of 5 .
					· · · ·

^a Freq	$^{a}I_{IR}$	EXP	Vibrational assignments
3614	64		υ(N-H)
3193	20	3193	v(s) C-H _{Ben}
3172	6		$\upsilon(s) + \upsilon(as) \text{ C-H}_{\text{Ben}}$
3160	3		υ(as) C-H _{Ben}
1763	191		υ(C-O)
1664	69	1661	υ (C=C-C=C _{Ben}) + υ (C-O)+ υ υ (C=N-C=N _{pyr})
1632	107		υ (C=C-C=C _{Ben}) + υ (C-O)+ υ (C=N-C=N _{pyr})
1543	321		$(\rho)(N-H)+ \upsilon (C=N-C=N_{pyr})$

1435	335		(δ) (C-H _{pyr}) +(ρ) C-H _{Ben} + v (C-C)
1372	51		$(\delta) (C-H_{pyr}) + (\rho) C-H_{Ben}$
1269	46		$(\delta) (C-H_{pyr}) + (\rho) C-H_{Pry}$
1197	122		$(\rho + \delta)$ C-H _{Ben} + γ (C-H _{Ben})
1143	52		$(\rho + \delta)$ C-H _{Ben}
1030	41		υ (C=C-C=C _{Ben}) + (ρ) C-H _{Ben}
943	11	958	$(\tau + \delta)$ C-H _{Ben}
892	51		$(\rho) C-H_{Ben} + (\rho) C-H_{Pry} + (\rho) (N-H)$
770	23	759	(w) C-H _{Ben} + v (C-Cl)
690	23		(γ) C-H _{Ben}

Table S18: Calculated vibrational frequencies of 6.

^a Freq	^a I _{IR}	EXP	Vibrational assignments
3613	66		υ(N-H)
3224	2	3347	v(s) C-H _{Ben}
3180	39		$v(as) C-H_{Ben}$
3174	5		$\upsilon(s) + \upsilon(as) C-H_{Ben}$
3032	7		$\upsilon(\text{C-H}_{\text{Pry}})$
1762	190		υ(C-O)
1664	70	1659	υ (C=C-C=C _{Ben}) + υ (C-O)+ υ υ (C=N-C=N _{pyr})+ (δ) C-H _{Ben}
1652	68	1565	$v (C=C-C=C_{Ben}) + v(C-O) + v (N-O_{NO2})$
1544	313		$(\rho)(N-H)+ \upsilon (C=N-C=N_{pyr}) + (\delta) C-H_{Ben}$
1435	351		(δ) (C-H _{pyr}) +(ρ) C-H _{Ben} + (δ) C-H _{Ben} + υ (C-C)
1378	389	1338	$(\delta) (C-H_{pyr}) + (\rho) C-H_{Ben} + \upsilon (N-O_{NO2})$
1271	66		$(\delta) (C-H_{pyr}) + (\rho) C-H_{Pry}$
1197	118		$(\rho + \delta)$ C-H _{Ben} + γ (C-H _{Ben})
1143	54		$(\rho + \delta)$ C-H _{Ben}
1090	14		υ (C=C-C=C _{Ben}) + (ρ) C-H _{Ben} + (δ) (C-H _{pyr})
945	17	958	$(\tau + \delta)$ C-H _{Ben}
892	52	895	$(\rho) C-H_{Ben} + (\rho) C-H_{Pry} + (\rho) (N-H)$
771	25	765	(w) C-H _{Ben} + v (N-O _{NO2})
684	6		(ρ) C-H _{Prv} + (ρ) (N-O _{NO2})

TADIE S17. Calculated vibrational frequencies of	Table	• S19:	Calculated	vibrational	frequ	encies of 7	1.
---	-------	--------	------------	-------------	-------	-------------	----

^a Freq	$^{a}I_{IR}$	EXP	Vibrational assignments
3615	62		υ(N-H)
3202	12	3459	v(s) C-H _{Ben}
3192	22		v(s) C-H _{Ben}
3183	11		$v(s) + v(as) C-H_{Ben}$
3177	46		$v(as) C-H_{pyr}$
3130	28		$v(s) OCH_{CH3}$

2998	65		υ(s) OCH _{CH3}
1771	207		υ(C-O)
1665	67	1658	υ (C=C-C=C _{Ben}) + υ (C-O)+ υ υ (C=N-C=N _{pyr})
1632	114		υ (C=C-C=C _{Ben}) + (ρ + δ) C-H _{Ben} + υ (C=N-C=N _{pyr})
1544	304		$(\rho)(N-H) + \upsilon (C=N-C=N_{pyr})$
1433	354		$(\delta) (C-H_{pyr}) + (\rho) C-H_{Ben} + \upsilon(C-C)$
1378	58		$(\delta) (C-H_{pyr}) + (\rho) C-H_{Ben}$
1275	128	1270	$(\delta) (C-H_{pyr}) + (\rho) C-H_{Pry}$
1194	115	1187	$(\rho + \delta)$ C-H _{Ben} + γ (C-H _{Ben})
1140	60		$(\rho + \delta)$ C-H _{Ben}
1064	60		υ (C=C-C=C _{Ben}) + υ (OCH _{CH3})
999	4		$(\tau + \delta)$ C-H _{Ben}
892	53		$(\rho) C-H_{Ben} + (\rho) C-H_{Pry} + (\rho) (N-H)$
772	28	720	(w) C-H _{Ben} + $v(OCH3)$
619	16		(γ) C-H _{Ben}

Frequencies are given in cm⁻¹, v =stretching, β =in-plane bending, γ =out-plane bending δ =scissoring, ρ =rocking, w= wagging, s =symmetric, as=asymmetric, τ =twisting, Ben=benzene ring, pyr = pyrazone structure, pry= prydine, EXP= Experimental values.

Figure S4: NPA graphs of 4-7 compounds.

Table 20: Computed average polarizability $\langle \alpha \rangle$ dipole moment (μ_{tot}), first hyperpolarizability (β tot) and second hyperpolarizability (γ_{tot}) of compounds 4-7.

Compounds	μ_{tot}	<a>×10⁻²³	$\beta_{tot} imes 10^{-30}$	<y>×10⁻³⁵</y>
4	5.9373	3.87	7.88	5.82
5	5.8622	3.78	9.74	5.27
6	8.5041	3.86	9.20	6.13
7	3.2695	3.90	15.6	6.63

 μ_{tot} in Debye (D); $\langle \alpha \rangle$, β_{tot} , and $\overline{\langle \gamma \rangle}$ are in *esu*.

 Table S21: Dipole polarizability and major contributing tensor (e.s.u.) of the studied comp. 4-7.

Dipole				
Moment	4	5	6	7
μ _x	-4.9478	-4.3304	-7.3535	-0.8698
μ_{v}	3.2213	3.2439	3.9722	2.3415
μ_z	-0.6282	-2.2563	-1.5704	-2.1097
μ_{total}	5.9373	5.8622	8.5041	3.2695
Polarizability				
α_{xx}	4.51×10-23	4.40×10-23	4.39×10-23	4.88×10-23
$\alpha_{_{VV}}$	4.29×10 ⁻²³	4.30×10 ⁻²³	4.42×10 ⁻²³	4.12×10-23

α_{zz}	2.81×10-23	2.65×10-23	2.77×10 ⁻²³	2.72×10 ⁻²³
α_{total}	3.87×10 ⁻²³	3.78×10 ⁻²³	3.86×10 ⁻²³	3.90×10 ⁻²³
2 nd Hyper				
pol.				
γx	3.67×10 ⁻³⁵	3.11×10 ⁻³⁵	3.82×10 ⁻³⁵	4.30×10 ⁻³⁵
$\gamma_{ m Y}$	1.91×10 ⁻³⁵	1.95×10 ⁻³⁵	2.09×10-35	2.11×10-35
γ_Z	0.23×10 ⁻³⁵	0.21×10 ⁻³⁵	0.22×10 ⁻³⁵	0.21×10 ⁻³⁵
Average <y></y>	5.82×10 ⁻³⁵	5.27×10 ⁻³⁵	6.13×10 ⁻³⁵	6.63×10 ⁻³⁵
Magnitude of	4.15×10-35	3.68×10 ⁻³⁵	4.36×10-35	4.80×10-35
γ				

 Table S22: Frequency dependent Second hyperpolarizability (e.s.u.) of studied compounds 4-7.

Parameters	Frequency ω	4	5	6	7
$\gamma(-\omega,\omega,0,0)$	0.000	5.82×10 ⁻³⁵	5.27×10 ⁻³⁵	6.13×10 ⁻³⁵	6.63×10 ⁻³⁵
	1907.21nm	6.19×10 ⁻³⁵	5.61×10 ⁻³⁵	6.56×10 ⁻³⁵	7.17×10 ⁻³⁵
$\gamma(-2\omega,\omega,\omega,0)$	0.000	5.82×10 ⁻³⁵	5.27×10 ⁻³⁵	6.13×10 ⁻³⁵	6.63×10 ⁻³⁵
	1907.21nm	7.07×10 ⁻³⁵	6.43×10 ⁻³⁵	7.61×10 ⁻³⁵	8.54×10-35

Table S23: The computed first hyperpolarizability (β_{tot}) and major contributing tensors (e.s.u) of compounds 4-7.

Polarizabilit	4	5	6	7
y				
β_{xxx}	-3.18×10-30	4.46×10-30	-7.80×10-30	9.29×10-30
β_{xxy}	3.19×10-30	-0.59×10 ⁻³⁰	2.31×10-30	-1.15×10-30
β_{xyy}	2.26×10-30	4.10×10 ⁻³⁰	2.00×10-30	5.27×10 ⁻³⁰
β_{yyy}	4.40×10 ⁻³⁰	3.63×10 ⁻³⁰	5.07×10 ⁻³⁰	2.66×10-30
β_{xxz}	0.59×10 ⁻³⁰	-0.54×10 ⁻³⁰	1.70×10 ⁻³⁰	-1.56×10 ⁻³⁰
β_{vvz}	-0.13×10 ⁻³⁰	-1.82×10 ⁻³⁰	-1.44×10 ⁻³⁰	-2.04×10 ⁻³⁰
β_{xzz}	0.15×10 ⁻³⁰	0.43×10 ⁻³⁰	0.32×10 ⁻³⁰	0.49×10 ⁻³⁰
β_{yzz}	0.18×10 ⁻³⁰	-0.13×10 ⁻³⁰	0.003×10 ⁻³⁰	0.31×10 ⁻³⁰
β_{zzz}	-0.27×10-31	0.04×10-30	-0.09×10-30	-0.04×10-30
β_{total}	7.88×10-30	9.74×10-30	9.20×10-30	15.6×10-30

Table S24: Frequenc	y dependent	First hyperpolari	izability (<i>e.s.u.</i>)	of studied compour	nd 4-7 .
---------------------	-------------	-------------------	-----------------------------	--------------------	-----------------

	Parameters	Frequency	4	5	6	7
		ω				
Static	β (-ω;ω,0,)	0.000	7.88×10 ⁻³⁰	9.74×10 ⁻³⁰	9.20×10 ⁻³⁰	15.6×10- 30
	β (-2, ω;ω,ω)	0.000	7.88×10 ⁻³⁰	9.74×10 ⁻³⁰	9.20×10 ⁻³⁰	15.6×10- 30

Specific	β (-ω;ω,0)	1907.21nm	3.89×10 ⁻²³	3.81×10 ⁻²³	3.89×10 ⁻²³	3.93×10- 23
	β (-2ω;ω,ω)	1907.21nm	3.89×10 ⁻²³	3.81×10 ⁻²³	3.89×10 ⁻²³	3.93×10 ⁻ 23

 Table S25: In Vitro Antioxidant Activity of synthesized compounds (4-7)

Compound	Conc. (µg/ml)				IC ₅₀ (µM)
	50	75	100	125	
4	15.73 ± 0.84	37.81 ± 0.61	48.24 ± 1.21	68.43 ± 1.17	5.98 ± 1.95
5	16.92 ± 0.99	34.81 ± 1.23	63.12 ± 1.53	71.72 ± 0.88	5.92 ± 0.11
6	6.13 ± 0.54	22.71 ± 0.61	35.14 ± 1.21	61.43 ± 1.17	6.98 ± 0.95
7	6.96 ± 0.99	19.87 ± 2.02	48.86 ± 1.12	69.43 ± 2.00	7.76 ± 1.76
Ascorbic					
acid	17.34 ± 1.13	38.60 ± 0.12	69.15 ± 1.17	74.34 ± 1.08	5.31 ± 1.22

 Table S26: Urease Inhibitory Activity of synthesized compounds (4-7)

Compounds	IC ₅₀ (μM)
4	6.79 ± 0.92
5	4.12 ± 1.18
6	4.77 ± 0.92
7	11.91 ± 0.34
Thiourea	1.94 ±0.36

Characterization By NMR & FTIR

4-(10-oxo-10,11-dihydro-5H-indeno[2',1':5,6]pyrido[2,3-b]pyrazin-11-yl)benzaldehyde (4).

11-(4-chlorophenyl)-5,11-dihydro-10H-indeno[2',1':5,6]pyrido[2,3-b]pyrazin-10-one(5).

11-(4-nitrophenyl)-5,11-dihydro-10H-indeno[2',1':5,6]pyrido[2,3-b]pyrazin-10-one(6).

2.5.2 Characterization

4-(10-oxo-10,11-dihydro-5H-indeno[2',1':5,6]pyrido[2,3-b]pyrazin-11-yl)benzaldehyde (4). Yellow solid, yield: 82%, mp 180°C; IR (KBr, cm⁻¹): 3214 (N-H), 2894, 2812(CHO-H),

1659.96(CHO), 1566.36(CO), 843.88, 725.09; ¹H-NMR (DMSO- d_6 , 400 MHz): $\delta = 5.46$ (s, 1H, Non-Aromatic-H), 7.37-7.34 (m, 3H, Indanone C_{20,21,22}-H), 7.40 (d, 2H, Aryl C_{12,16}-H, J=6.4 Hz), 7.51-7.47 (m, 1H, Indanone C₂₃-H), 7.65 (d, 1H, Pyrazine C₄-H, J=8.1 Hz), 7.90 (d, 2H, Aryl C_{13,15}-H, J=6.4 Hz), 8.08 (d, 1H, Pyrazine C₅-H, J=8.1 Hz), 10.25 (s, 1H, -CHO), 8.95 (s, N-H); ¹³C-NMR (DMSO- d_6 , 100 MHz): $\delta = 34.17$ (Nonaromatic-C), 116.72, 119.19, 120.97, 122.97, 129.19, 127.13, 129.67, 132.77, 133.61, 135.98, 136.36, 136.66, 138.25, 141.23, 157.24, 160.88, 185.16 (C=O), 187.17 (CHO); Elemental analysis calculated for C₂₁H₁₃N₃O₂ (%): C, (74.33); H, (3.86); N, (12.38); observed (%): C, (74.29); H, (3.83); N, (12.35).

11-(4-chlorophenyl)-5,11-dihydro-10H-indeno[2',1':5,6]pyrido[2,3-b]pyrazin-10-one(5).

Yellowish green solid, yield: 82%, mp 168°C; IR (KBr, cm⁻¹): 3193.08 (N-H), 1661.48 (CO), 958.53, 759.39 (C-Cl); ¹H-NMR (DMSO- d_6 , 400 MHz): $\delta = 6.06$ (s, 1H, Non-Aromatic-H), 7.16 (d, 2H, Aryl C_{13,15}-H, J=6.4 Hz), 7.23 (d, 1H, Indanone C₂₀-H), 7.31 (d, 2H, Aryl C_{12,16}-H, J=6.4

Hz), 7.42 (t, 1H, Indanone C₂₁-H), 7.73 (t, 1H, Indanone C₂₂-H), 8.39 (d, 1H, Indanone C₂₃-H), 8.54 (d, 1H, Pyrazine C₄-H, J=8.1 Hz), 8.70 (d, 1H, Pyrazine C₅-H, J=8.1 Hz), 9.33 (s, N-H); ¹³C-NMR (DMSO-*d*₆, 100 MHz): δ = 30.37 (Nonaromatic-C), 117.16, 121.34, 122.35, 124.94, 125.41, 125.60, 127.27, 127.33, 128.81, 129.69, 130.19, 130.28, 130.68, 144.44, 149.59, 151.93, 188.08 (C=O); Elemental analysis calculated for C₂₁H₁₃N₃O₂ (%): C, (69.47); H, (3.50); N, (12.15); observed (%): C, (69.36); H, (3.46); N, (12.11).

11-(4-nitrophenyl)-5,11-dihydro-10H-indeno[2',1':5,6]pyrido[2,3-b]pyrazin-10-one(6). Dirty green solid, yield: 85%, mp 185°C; IR (KBr, cm⁻¹): 3347.97 (N-H), 1659.96(CO), 1565.68(NO₂), 1338.08(NO₂), 895.75, 765.51; ¹H-NMR (DMSO-*d*₆, 400 MHz): δ = 6.06 (s, 1H, Non-Aromatic-H), 7.23 (d, 2H, Aryl C_{12,16}-H, J=6.4 Hz), 7.35 (d, 2H, Aryl C_{13,15}-H, J=6.4 Hz), 7.47 (d, 1H, Indanone C₂₀-H), 7.71 (t, 1H, Indanone C₂₁-H), 7.93 (t, 1H, Indanone C₂₂-H), 8.09 (d, 1H, Indanone C₂₃-H), 8.46 (d, 1H, Pyrazine C₄-H, J=8.1 Hz), 8.48 (d, 1H, Pyrazine C₅-H, J=8.1 Hz), 9.62 (s, N-H); ¹³C-NMR (DMSO-*d*₆, 100 MHz): δ = 29.66 (Nonaromatic-C), 120.71, 124.84, 125.85, 128.39, 129.10, 130.82, 130.83, 132.38, 133.09, 133.19, 133.78, 133.79, 140.18, 147.94, 153.09, 155.43, 191.58 (C=O); Elemental analysis calculated for C₂₁H₁₃N₃O₂ (%): C, (67.41); H, (3.39); N, (15.72); observed (%): C, (67.37); H, (3.34); N, (15.68).

11-(4-methoxyphenyl)-5,11-dihydro-10H-indeno[2',1':5,6]pyrido[2,3-b]pyrazin-10-one(7).

Purple solid, yield: 89%, mp 178°C; IR (KBr, cm⁻¹): 3459.96 (N-H), 1658.79 (CO), 1270.44 (O-CH₃), 1187.07 (O-CH₃), 720.60; ¹H-NMR (DMSO- d_6 , 400 MHz): $\delta = 5.64$ (s, 1H, Non-Aromatic-H), 3.07 (s, 3H, -OCH₃), 7.10 (d, 2H, Aryl C_{13,15}-H, J=6.4 Hz), 7.21 (d, 2H, Aryl C_{12,16}-H, J=6.4 Hz), 7.32-7.29 (m, 4H, Indanone C₂₀₋₂₃-H), 7.79 (d, 1H, Pyrazine C₄-H, J=8.1 Hz), 8.0 (d, 1H, Pyrazine C₅-H, J=8.1 Hz), 9.25 (s, N-H); ¹³C-NMR (DMSO- d_6 , 100 MHz): $\delta = 35.16$ (Nonaromatic-C), 52.14 (O-CH₃), 126.16, 130.34, 131.35, 133.94, 134.41, 134.60, 136.27, 136.33, 137.81, 138.69, 139.19, 139.28, 145.68, 153.44, 158.59, 160.93, 185.71 (C=O); Elemental analysis calculated for C₂₁H₁₃N₃O₂ (%): C, (73.89); H, (4.43); N, (12.31); observed (%): C, (73.80); H, (4.37); N, (12.26).