Self-assembled boron nitride nanosheets-based aerogels as support frameworks for efficient thermal energy storage phase change materials

Lanshu Xu¹, Yujie Ding¹, Laishun Wang^{2*}

 ¹ Zhuhai Fudan Innovation Institution, Zhuhai, 518057, China
² Sino-French Institute for Nuclear Energy and Technology, Sun Yat-sen University, Zhuhai, 519080, China

*Corresponding author: Laishun Wang (E-mail: wanglaish@mail.sysu.edu.cn)

Fig. S1 SEM image of h-BN and AFM image of BNNSs. The rigid and thick bulk h-BN powders were transformed into BNNSs with few layers.

Fig. S2 TEM and AFM images of GO nanosheets. The majority of graphene is monolayer with lateral size of 5-8 $\mu m.$

Fig. S3 High-resolution deconvoluted XPS spectrum of O 1s of BG-85 aerogel.

Fig. S4 Illustration of test surface for XRD.

			/ _ /	/ _ /				
Samples	T _m /°C	T_/°C	$\Lambda H_{m}/J/\sigma$	$\Lambda H_{a}/J/\sigma$	T _{manat} /°C	T	T_{a}/C	Tana/°C
Sampies	I III C	10 0	Line, or S	S	T monset ^o			

PEG	65.7	40.4	192.3	184.8	49.7	75.7	47.5	27.3
BGP-80	66.5	43.0	169.6	149.1	54.1	73.8	49.3	33.2
BGP-85	66.5	43.1	187.2	172	55.8	74.0	48.8	32.9
BGP-90	66.5	45.6	176.6	158.2	55.1	73.6	50.5	35.6
BGP-95	66.7	43.5	181.5	159.6	51.6	76.6	49.8	30.2

Table S1 Specific parameters of phase change enthalpies and characteristic temperatures. Note: T_m : Melting point temperature, T_c : Crystallisation temperature, ΔH_m : Melting enthalpy, ΔH_c : Crystallisation enthalpy, T_{monset} : Melting start point temperature, T_{mend} : Melting end point temperature, T_{conset} : Crystallisation start point temperature and T_{cend} : Crystallisation end point temperature.

Fig. S5 Thermogravimetric analysis (TGA) of BGP composite PCMs.