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Fig. S1. Deconvoluted XRD spectra of MCC and SMCNC in the range of 11° to 26°.
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Fig. S2. (a) High-angle annular dark-field (HAADF) image, EDX-mapping of (b) carbon, (c)

iron, and (d) sulfur, and (e) EDX-spectrum of SMCNC.
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Fig. S3. FTIR spectrum of the as-prepared and recycled SMCNC samples.
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Fig. S4. XRD spectrum of the as prepared and recycled SMCNC.



General method for Knoevenagel condensation
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Fig. S5. XPS S2p spectrum of recycled SMCNC.

In a representative experimental procedure, benzaldehyde 1a (0.21 gm, 2 mmol) was transferred
into a 25 mL reaction flask charged with malononitrile 2a (0.20 gm, 3 mmol), 5 mL of the water,
SMCNC (10 % wt.) were mixed. The reaction was performed under stirring at ambient temperature
for the mentioned time. The reaction completion was followed using TLC. After the reaction
completion, the SMCNC was collected using a Neodymium magnet.

Table S1. Gutmann’s AN, DN, dipole moment, and dielectric constant of different solvents with

the isolated yield (%).

Solvent AN DN Dipole moment | Dielectric constant | yield, (%)
H,O 54.8 18.0 1.87 80.1 97
EtOH 37.9 19.3 3.69 243 95
DMF 16.0 26.6 3.82 38.2 90
Toluene 0 0.1 0.31 2.38 50
Hexane 0 0 0.08 1.88 60




Table S2. The melting point of different synthesized compounds: Reported versus obtained.

Compound Melting point (°C) Compound Melting point (°C)
Obtained Reported Obtained
3aa 81-83 82-84! 3ab 47-48 47-482
3ba 138-140 137 - 1383 3bb 167-168 168-169*
3ca 140-142 138 - 1405 3cb 96-97 97-98°6
3da 163-164 162 - 1647 3db 83-85 89-903
3ea 113-115 114-115° 3eb 159-160 160-1618
3fa 138-140 137 - 13910 3fb 91-92 89-914
3ga 80-82 81 - 821! 3gb 73-74 70-722
3ha 130-132 131-133"12 3hb 54-55 53-5413
3ia 167-169 168-169'4 3ib 153-154 152-1531
3ja 124-126 125 - 12716 3jb 112-113 112-114"7
3ka 165-166 164 - 166'8 3kb 66-67 66-67'3
3la 220-222 221-2231 31b 187-189 188-189%0
3ma 64-66 63-65%!




Analytical Data for Some Knoevenagel Products

2-(2-Nitrobenzylidene)malononitrile (3ca)

TH NMR (400 MHz, CDCl;) 6 8.47 (d, J= 0.7 Hz, 1H, CH=C), 8.38 (dd, J= 8.5, 1.3 Hz, 1H, Ar-
H), 7.94 —7.88 (m, 1H, Ar-H), 7.86 — 7.78 (m, 2H, Ar-H).
2-(4-Chlorobenzylidene)malononitrile (3da)

TH NMR (400 MHz, CDCl;) 6 7.85 (d, J = 8.4 Hz, 2H, Ar-H), 7.73 (s, I1H, CH=C), 7.51 (d, J =
8.5 Hz, 2H, Ar-H).

2-(3-Chlorobenzylidene)malononitrile (3ea)

'H NMR (400 MHz, CDCl;) 8 8.29 (s, 1H, CH=C), 8.20 (dt, /= 8.1, 0.9 Hz, 1H, Ar-H), 7.60 —
7.54 (m, 2H, Ar-H), 7.51 — 7.41 (m, 1H, Ar-H).

2-(4-Methylbenzylidene)malononitrile (3fa)

TH NMR (400 MHz, CDCl;) & 7.94 — 7.79 (m, 2H, Ar-H), 7.74 (s, 1H, CH=C), 7.36 (d, J = 8.0
Hz, 2H, Ar-H), 2.48 (s, 3H, CH3).

2-(2,4,5-Trimethoxybenzylidene)malononitrile (3ia)

'TH NMR (400 MHz, CDCl;) & 8.19 (s, 1H, CH=C), 7.82 (s, 1H, Ar-H), 6.45 (s, 1H, Ar-H), 3.99
(s, 3H, CH3), 3.91 (s, 3H, CH3;), 3.87 (s, 3H, CH3).

2-(3-Indolyl) malononitrile (31a)

TH NMR (500 MHz, CDCl3) 8 9.39 (s, 1H, NH), 7.98 (s, IH, CH=C), 7.79 (d, J= 8.2 Hz, 1H, Ar-
H), 7.63 — 7.56 (m, 1H, CH-pyrrole), 7.53 (d, J = 8.5 Hz, 1H, Ar-H), 7.36 (dd, J = 12.7, 5.4 Hz,
2H, Ar-H). 13C NMR (126 MHz, CDCl;) 6 142.63, 138.52, 130.24, 126.72, 125.17, 124.78,
122.81, 120.57, 114.65, 113.72, 112.61.

Ethyl (Z)-2-cyano-3-(4-nitrophenyl)acrylate (3bb)



'H NMR (400 MHz, CDCl;) & 8.37 (d, J = 8.4 Hz, 2H, Ar-H), 8.32 (s, 1H, CH=C), 8.15 (d, J =
8.4 Hz, 2H, Ar-H), 4.44 (q, J = 7.2 Hz, 2H, CH;), 1.44 (t,J = 7.1 Hz, 3H, CHj).

Ethyl (Z)-2-cyano-3-(2-nitrophenyl)acrylate (3cb)

'TH NMR (400 MHz, CDCls) 6 8.69 (t, J = 2.0 Hz, 1H, CH=C), 8.46 — 8.34 (m, 2H, Ar-H), 8.30
(s, 1H, Ar-H), 7.73 (t, J = 8.1 Hz, 1H, Ar-H), 4.40 (q, J = 7.1 Hz, 2H, CH,), 1.40 (t, J = 7.2 Hz,
3H, CHj).

Ethyl (Z)-2-cyano-3-(p-tolyl)acrylate (3tb)

'TH NMR (400 MHz, CDCl;) 6 8.20 (s, 1H, CH=C), 7.96 — 7.82 (m, 2H, Ar-H), 7.29 (d, /= 8.0 Hz,
2H, Ar-H), 4.37 (q,J=7.1 Hz, 2H, CH;CH,), 2.42 (s, 3H, CH3), 1.39 (t, J="7.1 Hz, 3H, CH;CH,).
Ethyl (Z)-2-cyano-3-(2-methoxyphenyl)acrylate (3gb)

'H NMR (400 MHz, CDCl;) & 8.71 (s, 1H, CH=C), 8.24 (d, /= 7.9 Hz, 1H, Ar-H), 7.47 (t, J =
7.9 Hz, 1H, Ar-H), 7.08 — 6.86 (m, 2H, Ar-H), 4.34 (q, J = 7.1 Hz, 2H, CH3CH,), 3.86 (s, 3H,
CH,), 1.36 (t,J=7.2 Hz, 3H, CH;CH,).

Ethyl-2-cyano-3-(naphthalen-1-yl) acrylate (3kb)

H NMR (500 MHz, CDCl;) § 9.21 (s, 1H, CH=C), 8.42 (d, J = 7.3 Hz, 1H, Ar-H), 8.14 (t, J =
7.9 Hz, 2H, Ar-H), 8.02 (dd, J = 8.0, 1.0 Hz, 1H, Ar-H), 7.79 — 7.65 (m, 3H, Ar-H), 4.55 (q, J =
7.1 Hz, 2H, CH;CH,), 1.55 (t, J = 7.2 Hz, 3H, CH;CH,). 3C NMR (126 MHz, CDCl;) § 162.43,
152.89, 133.60, 133.53, 131.76, 129.25, 128.41, 128.33, 127.91, 126.92, 125.52, 122.95, 115.52,
105.86, 14.31.

Ethyl 2-cyano-3-anthracenylacrylate (31b)
TH NMR (500 MHz, CDCl;) 6 9.08 (s, 1H, Ar-H), 8.25 (s, 1H, CH=C), 7.80 — 7.75 (m, 2H, Ar-

H), 7.60 — 7.54 (m, 2H, Ar-H), 7.49 — 7.41 (m, 4H, Ar-H), 7.34 (t, J= 7.4 Hz, 1H, Ar-H), 4.29 (q,

J=17.1 Hz, CH;CH,), 1.32 (t, J = 7.1 Hz, CH;CH,). *C NMR (126 MHz, CDCl3) § 162.22,



155.92, 145.80, 138.40, 130.38, 129.22, 128.91, 128.81, 128.70, 128.55, 127.69, 119.47, 116.24,
114.48,99.37, 61.93, 13.74.

General method for Thorpe-Ziggler condensation

In a typical experimental procedure, dimethylpyridine 4 (0.33 gm, 2 mmol) was transferred to a
25 mL reaction vessel charged with a-halogenated carbonyl compound 5 (2.5 mmol), ethanol (5
mL), and SMCNC (10% wt.) were mixed. The reaction was stirred at reflux temperature in an oil
bath for the proper time. The reaction completion was followed using TLC. After the reaction

completion, the SMCNC was collected using Neodymium magnet.

Table S3. The melting point of different synthesized compounds: Reported versus obtained.

Compound Melting point (°C) Compound Melting point (°C)
Obtained Reported Obtained Reported
6a 193-195 192-193%2 7a 235-236 236-2373
6b 88-90 87-88%4 7b 156-157 154-155%
6¢ 131-133 132-13326 Tc 206-208 206-207%7
6d 142-143 140-141%8 7d 203-204 204-205%
6e 177-178 176-17830 Te 221-223 219-2203!




Analytical Data for Some Alkylated and Thorpe Products.
2-((3-Cyano-4,6-dimethylpyridin-2-yl)thio)-N-(4-methoxyphenyl)acetamide (6f)
'TH NMR (500 MHz, CDCl;) 8 9.15 (s, 1H, NH), 7.43 — 7.36 (m, 2H, Ar-H), 7.30 (s, 1H, Ar-H),

6.91 — 6.84 (m, 2H, Ar-H), 4.01 (s, 2H, CH,), 3.81 (s, 3H, OCH3), 2.65 (s, 3H, CH3), 2.53 (s, 3H,
CH;). 13C NMR (126 MHz, CDCly) § 166.64, 161.33, 160.85, 156.36, 153.01, 130.92, 121.41,
121.10, 114.37, 114.15, 105.62, 59.49, 55.46, 38.11, 34.65, 31.21, 24.76, 20.27.

2-((3-Cyano-4,6-dimethylpyridin-2-yl)thio)-N-(naphthalen-1-yl)acetamide (6g)
'TH NMR (500 MHz, CDCl3) 6 9.37 (s, |H, NH), 7.89 (dd, J = 28.1, 7.8 Hz, 2H, Ar-H), 7.69 (dd,

J=19.8, 8.3 Hz, 2H, Ar-H), 7.49 (td, J = 7.6, 4.1 Hz, 2H, Ar-H), 7.42 (t, J= 7.3 Hz, 1H, Ar-H),
6.95 (s, 1H, Ar-H), 4.17 (s, 2H, CH,), 2.56 (s, 3H, CH3), 2.53 (s, 3H, CH3). 13C NMR (126 MHz,
CDCl;) 6 164.83, 159.56, 148.68, 143.98, 134.24,132.27, 128.71, 128.15, 126.55, 126.34, 126.14,
125.66, 123.49, 122.41, 121.98, 121.21, 97.79, 31.26, 24.34, 20.27.

N-(Benzold[thiazol-2-yl)-2-((3-cyano-4,6-dimethylpyridin-2-yl)thio)acetamide (6h)
TH NMR (500 MHz, CDCl5) 6 7.84 (dd, J=31.2, 8.0 Hz, 2H, Ar-H), 7.48 — 7.45 (m, 1H, Ar-H),

7.36 (dd, J=11.2, 4.0 Hz, 1H, Ar-H), 4.10 (s, 2H, CH,), 2.74 (s, 3H, CHj), 2.53 (s, 3H, CH;). 3C
NMR (126 MHz, CDCLy) & 167.36, 161.98, 160.11, 158.00, 153.25, 146.84, 131.43, 126.40,
124.15, 121.51, 121.42, 120.40, 114.05, 105.52, 38.01, 34.26, 31.10, 24.47, 20.22.

2-((3-Cyano-4,6-dimethylpyridin-2-yl)thio)-N-(thiazol-2-yl)acetamide (6i)
TH NMR (500 MHz, CDCls) 6 11.85 (s, 1H, NH), 7.85 (d, J = 7.3 Hz, 1H, CH thiazole), 7.44 (d,

J=17.6 Hz, 1H, CH thiazole), 7.05 (s, 1H, CH pyridine), 4.07 (s, 2H), 2.86 (s, 3H), 2.56 (s, 3H).
13C NMR (126 MHz, CDCl3) & 166.75, 161.94, 160.60, 157.35, 153.43, 149.69, 134.09, 128.63,
127.95, 125.83, 121.59, 114.13, 107.65, 105.66, 34.10, 24.40, 20.33.

3-Amino-N-(4-methoxyphenyl)-4,6-dimethylthieno[2,3-b][pyridine-2-carboxamide (7f)

10



'TH NMR (500 MHz, CDCl3) 8 7.50 — 7.44 (m, 2H, Ar-H), 7.11 (s, 1H, NH), 6.92 (dd, J= 6.6, 2.3
Hz, 3H, Ar-H+CH pyridine), 6.44 (s, 2H), 3.83 (s, 3H, OCH3;), 2.79 (s, 3H, CH3), 2.63 (s, 3H,
CH3). 13C NMR (126 MHz CDCls) 6 164.13, 156.69, 148.25, 130.52, 122.96, 122.33, 114.19,
55.50, 38.13, 31.22, 24.21, 20.22.

3-Amino-4,6-dimethyl-N-(naphthalen-1-yl)thieno[2,3-b]pyridine-2-carboxamide (7g)
'TH NMR (500 MHz, CDCl;) 8 7.97 (d, J = 8.4 Hz, 1H, Ar-H), 7.93 — 7.89 (m, 2H, Ar-H+NH),

7.78 (d, J= 8.2 Hz, 1H), 7.60 — 7.51 (m, 4H, Ar-H), 6.95 (s, 1H, CH pyridine), 6.49 (s, 2H, NH,)
2.80 (s, 3H, CHj), 2.65 (s, 3H, CHs). *C NMR (126 MHz, CDCl3) § 164.76, 159.49, 148.62,
143.91, 134.18, 132.20, 128.65, 128.08, 126.48, 126.28, 126.07, 125.59, 123.43, 122.35, 121.92,
121.15, 97.73, 24.28, 20.20.

3-Amino-N-(benzo[d]thiazol-2-yl)-4,6-dimethylthieno[2,3-b]pyridine-2-carboxamide (7Th)
TH NMR (500 MHz, DMSO-d6) 8 7.63 (d, J= 7.6 Hz, 1H, Ar-H), 7.40 (d, /= 7.9 Hz, 1H, NH),

7.19 (t, J = 7.4 Hz, 1H, Ar-H), 6.99 (t, J = 7.3 Hz, 1H, Ar-H), 6.93 (s, 1H), 6.86 (s, 1H, CH
pyridine), 2.73 (s, 2H, NH,), 2.50 (s, 3H, CH;), 2.48 (s, 3H, CHs). 3C NMR (126 MHz, DMSO-
d6) & 170.14, 167.36, 159.45, 156.49, 143.60, 132.47, 124.42, 120.91, 120.65, 120.20, 117.53, 17,

23.77, 19.69.

11



NMR Spectra of the Products
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