Journal Name

Supporting Documents

Figure S1 SEM images, optical image and AFM images of TiO_2 layer from spraying angle at 45° and 90°.

Height (cm)	x1000	x20000	X20000 (Cross)
30	10um		filition - 1um
40		• 1900	
	10um	<u>1um</u>	<u>1um</u>
50	1 <u>0u</u> m	• 1um	1um

Figure S2 SEM images at low and high resolution of c-TiO₂ layer from different spray height at 30, 40 and 50 cm.

Figure S3 SEM images of TiO₂ layer from different alcoholic solvents and spray temperature T_s . (a-c) TiO₂ from EtOH (boiling point $T_b = 78.2^{\circ}$ C) as precursor solvent $T_s = 350$, 450 and 550°C, respectively. (d-f) TiO₂ from IPA ($T_b = 82.3^{\circ}$ C) as precursor solvent $T_s = 350$, 450 and 550°C, respectively. (g-i) TiO₂ from 1-butanol ($T_b = 117.2^{\circ}$ C) as precursor solvent $T_s = 350$, 450 and 550°C, respectively. (g-i) TiO₂ from 1-butanol ($T_b = 117.2^{\circ}$ C) as precursor solvent $T_s = 350$, 450 and 550°C, respectively. (j-l) TiO₂ from 2-butanol ($T_b = 99.5^{\circ}$ C) as precursor solvent $T_s = 350$, 450 and 550°C, respectively. All sample was annealed at $T_a = 400^{\circ}$ C

Figure S4 Microscopic images of TiO₂ layer from different alcoholic solvents and T_s . (a-c) TiO₂ from EtOH ($T_b = 78.2^{\circ}$ C) as precursor solvent $T_s = 350$, 450 and 550°C, respectively. (d-f) TiO₂ from IPA ($T_b = 82.3^{\circ}$ C) as precursor solvent $T_s = 350$, 450 and 550°C, respectively. (g-i) TiO₂ from 1-butanol ($T_b = 117.2^{\circ}$ C) as precursor solvent $T_s = 350$, 450 and 550°C, respectively. (j-l) TiO₂ from 2-butanol ($T_b = 99.5^{\circ}$ C) as precursor solvent $T_s = 350$, 450 and 550°C, respectively. (J-l) TiO₂ from 2-butanol ($T_b = 99.5^{\circ}$ C) as precursor solvent $T_s = 350$, 450 and 550°C, respectively. All sample was annealed at $Ta = 400^{\circ}$ C.

Figure S5 Surface SEM images of ITO substrates under different annealing temperatures (Ta=25, 400, 450, 500, and 600°C).

3.4 Wettability of c-TiO₂

After depositing c-TiO₂ via spray pyrolysis, the wettability of the film by water is used to determine its uniformity and cleanliness. SEM images of MAPbI₃ perovskite film as deposited on a c-TiO₂ layer and after leaving the TiO₂ surface in ambient atmosphere for 45 minutes and >120 minutes, respectively, are shown in Figures S6a and S6b. The SEM images of the samples clearly demonstrate that exposing the TiO₂ layer for 45 minutes after deposition results in a pin-hole-free MAPbI₃ layer on TiO₂. The contact angles of water droplets on c-TiO₂ films and the duration of exposure to ambient air after deposition of the c-TiO₂ layer are shown in Figures 5c and 5d. The obtained perovskite layer has a homogeneous surface coverage. When the duration exceeded 120 minutes, the perovskite film exhibited decreased wettability and developed pinholes on its surface, as shown in Figure S6c. The high angle droplets could be the result of dust or organic species impurities deposited on the film surface by the ambient atmosphere.

Figure S6. (a) SEM image of the perovskite layer when duration of exposure to the ambient air = 45 min and (b) SEM image of the perovskite layer when the duration was > 120 min. (c) relationship between the duration of c-TiO₂ exposure to ambient air and the angle of the droplet (d) droplet shape when duration of exposure to the ambient air was varied from 45, 120, and 300 min.

Figure S7 J-V characteristics the best perovskite solar cell when using different solvents.

Table S1. Performance characterizations of PSCs from various solvent.

Sample	V _{oc} (V)	J _{sc} (mA/cm ²)	FF	PCE (%)	Rsh (Ohm.cm ²)	Rs, (Ohm.cm ²)
EtOH	0.86	19.64	0.41	6.96	342.86	21.43
2-Propanol	1.07	20.12	0.48	10.34	555.56	54.95
1-Butanol	1.05	19.56	0.58	11.89	1666.67	7.18