Electronic Supplementary Information

A colorimetric and fluorescent signaling probe for assaying Pd²⁺ in practical samples

Myung Gil Choi, Juyoung Han, Sangdoo Ahn* and Suk-Kyu Chang*

Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea

Contents

Experimental details

Table S1.	Representative Pd-selective reaction-based probes reported previously						
Table S2.	Photophysical properties of Res-DT in the presence and absence of Pd^{2+}						
	ions						
Table S3.	Analysis of Pd ²⁺ ions in a Pd-containing catalyst and a drug candidate						
Fig. S1.	Time-dependent Pd^{2+} signaling performance of Res-DT .						
Fig. S2.	Time-dependent Pd^{2+} signaling behavior of Res-DT in solutions containing						
1 15. 02.	(a) SDS (b) CTAD or (c) Tween 20 as a signal baseting surface t						
	(a) SDS, (b) CTAB, or (c) Tween 20 as a signal-boosting surfactant.						
Fig. S3.	Precipitation profile illustrating the Pd ²⁺ signaling of Res-DT in solutions						
	containing SDS or Tween 20 as the surfactant under illumination with a						
	red laser.						
Fig. S4.	Changes in the absorbance ratio of Res-DT (A_{572}/A_{452}) in the presence of						
8	common anions						
F:~ 65	Changes in the checkbarge matic of $\mathbf{P}_{\text{eff}} \mathbf{D}_{\text{eff}} \mathbf{D}_{\text{eff}} (A - A - A)$ in the masses of						
r 1g. 55.	Changes in the absorbance ratio of Res-D1 (A_{572}/A_{452}) in the presence of						
	common oxidants.						
Fig. S6.	Effect of competitive anions on the Pd^{2+} signaling performance of Res-DT .						
Fig. S7.	Changes in the fluorescence enhancement of Res-DT at 591 nm with the						
	incorporation of common anions. Inset: fluorescence spectra of Res-DT.						
Fig. S8 .	TLC profile of Res-DT (spot A), Res-DT with Pd ²⁺ (spot B), and resorufin						

(spot C).

Fig. S9. FAB mass spectrum of the Pd^{2+} signaling product of **Res-DT**.

- **Fig. S10.** FE-SEM image and associated EDX maps and data of the precipitate formed from the Pd²⁺ signaling of **Res-DT**.
- **Fig. S11.** Changes in the absorbance ratio of **Res-DT** (A_{572}/A_{452}) in the presence of diverse Pd species.
- **Fig. S12.** Calibration curve for Pd²⁺ determination using the fluorescence emission at 591 nm.
- **Fig. S13.** Time-dependent Pd^{2+} signaling activity of **Res-DT**, as characterized by the absorbance ratio of the signaling solution (A_{572}/A_{452}).
- **Fig. S14.** Plot illustrating the changes in color channel levels (RGB) in the presence of a Pd-containing drug candidate.
- Fig. S15. ¹H NMR spectrum of **Res-DT** in CDCl₃ (600 MHz).
- Fig. S16. ${}^{13}C$ NMR spectrum of **Res-DT** in CDCl₃ (150 MHz).
- Fig. S17. High-resolution mass spectrum of **Res-DT**.

Experimental details

1. General

Various materials including resorufin, phenyl chlorodithioformate, and Pd species such as Pd(OAc)₂, PdCl₂, Pd(PPh₃)₄, and K₂PdCl₆ were obtained from Merck KGaA. The White catalyst (1,2-bis(phenylsulfinyl)ethane palladium(II) acetate) and 2-picolinic acid were also sourced from Merck KGaA and were used without further purification. ¹H and ¹³C NMR measurements were performed using a Varian VNS NMR spectrometer. High-resolution mass spectrometry was conducted using a JEOL JMS-700 mass spectrometer with Fast atom bombardment (FAB) ionization. UV–vis and fluorescence signaling behavior were examined using Scinco S-3100 and FS-2 spectrophotometers, respectively. FE-SEM and EDX map images were obtained using Carl Zeiss SIGMA 300 microscopy equipped with Oxford EDX spectroscopy. The Pd-containing drug candidate was prepared according to a previously reported method.^{S1}

Mechanism	Structure	Signal	Conditions	LOD	Application	Merit	Ref.
		Fluorescence	CH ₃ CN:PBS buffer (8:2, <i>v/v</i> , pH 7.4)	2.6 nM	Pd ²⁺ assay in tap water, river water, and wastewater	 Environmental Pd sensing Low LOD 	S2
	F_3C	Colorimetry, fluorescence	PEG400:PBS buffer (6:4, v/v, pH 7.4)	29.4 nM	Pd imaging in HeLa cells	Naked-eye detectableBioimaging suitable	S3
Deallylation		Fluorescence	THF:PBS buffer (8:2, v/v, pH 7.4)	9.0 nM	Pd imaging in HeLa cells	Bioimaging suitableLow LOD	S4
		Colorimetry, fluorescence	DMSO:PBS buffer (8:2, v/v, pH 7.4)	2.2 nM	Pd ²⁺ imaging in HeLa cells	 Naked-eye detectable Bioimaging suitable Low LOD 	S5
		Fluorescence	CH ₃ CN:HEPES buffer (8:2, <i>v/v</i> , pH 7.2)	40 nM	Pd ²⁺ imaging in PC3 cells	• Bioimaging suitable	S6
		Colorimetry, fluorescence	pH 7.4 phosphate buffer with 1% DMSO	7.4 nM	Pd imaging in HeLa cells	Naked-eye detectableBioimaging suitableLow LOD	S7

Table S1.	Representative	Pd-selective	reaction-bas	sed probes	reported	previously

Mechanism	Structure	Signal	Conditions	LOD	Application	Merit	Ref.
Depropargylation		Colorimetry, fluorescence	THF:HEPES buffer (5:2, v/v, pH 7.4)	14.6 nM	Fabricating a paper- based test strip	Naked-eye detectablePaper strip	S8
		Fluorescence	pH 7.4 PBS buffer with 0.5% EtOH	25 nM	Pd ²⁺ imaging in Hep G2 and HL60 cells	• Bioimaging suitable	S9
Claisen rearrangement		Fluorescence	pH 10.0 Na ₂ CO ₃ /NaHCO ₃ buffer	1.4 µM	Pd ²⁺ sensing in a three-way catalyst	Industrial Pd sensingLow LOD	S10
Dimerization	OH OH OH	Fluorescence	CH ₃ CN under basic conditions	9.8 nM	Pd ²⁺ assay in tap water and river water	Environmental Pd sensingLow LOD	S11
Oxidative cyclization		Colorimetry, fluorescence	CH3CN	940 nM	Residual Pd detection in reactors	 Naked-eye detectable Industrial Pd sensing 	S12
Hydrolysis		Colorimetry, fluorescence	DMSO:phosphate buffer (1:1, v/v, pH 7.0)	10 nM	Pd ²⁺ assay in a real drug (ibuprofen) and a drug intermediate	 Naked-eye detectable Pharmaceutical analysis Low LOD 	S13

 Table S1. Representative Pd-selective reaction-based probes reported previously (continued)

Mechanism	Structure	Signal	Conditions	LOD	Application	Merit	Ref.
		Colorimetry, fluorescence	CH ₃ CN:H ₂ O (3:1, <i>v/v</i>)	57 nM	Pd ²⁺ imaging in MCF7 cells	Naked-eye detectableBioimaging suitable	S14
Hydrolysis		Colorimetry, fluorescence	pH 7.4 PBS buffer with 2% DMSO	10 nM	Pd ²⁺ assay in a Pd- containing catalyst and a drug candidate	 Naked-eye detectable Pharmaceutical analysis Industrial Pd sensing Scanner-assisted sensing Low LOD 	This work

Table S1. Representative Pd-selective reaction-based probes reported previously (continued))
---	---

Table S2. Photophysical properties of Res-DT in the presence and absence of Pd^{2+} ion	ns
---	----

Sample	Abs	sorbance	Fluorescence		
	λ_{max} Molar extinction coefficient (ε)		λ_{max}	Quantum yield (Φ)	
Res-DT	452 nm	12,300 M ⁻¹ ·cm ⁻¹	586 nm	0.009	
$\mathbf{Res-DT} + \mathrm{Pd}^{2+}$	572 nm	64,500 M ⁻¹ ·cm ⁻	591 nm	0.58	

Table S3. Analysis of Pd²⁺ ions in a Pd-containing catalyst and a drug candidate

	Pd ²⁺ added (μM)	Method involving UV-vis	s spectrometry	Method featuring an office scanner	
Analyte		Pd ²⁺ detected	Decement	Pd ²⁺ detected	Decement
		$(\mu M, n = 3)$	Recovery	$(\mu M, n = 3)$	Kecovery
	0	Not detected	-	Not detected	-
(the White estaluat)	1.0	0.92 ± 0.02	92.0%	1.07 ± 0.01	107.2%
(the White catalyst)	2.0	2.02 ± 0.04	101.3%	1.88 ± 0.03	94.1%
Pd-containing drug candidate	0	Not detected	-	Not detected	-
	1.0	0.91 ± 0.02	91.0%	1.04 ± 0.01	103.8%
	2.0	1.99 ± 0.05	99.8%	1.94 ± 0.02	97.4%

Fig. S1. Time-dependent Pd^{2+} signaling performance of **Res-DT**. [**Res-DT**] = 5.0 μ M, [Pd²⁺] = 25 μ M, [PBS pH 7.4] = 10.0 mM in an aqueous solution containing 2% (ν/ν) DMSO.

Fig. S2. Time-dependent Pd^{2+} signaling behavior of **Res-DT** in solutions containing (a) SDS, (b) CTAB, or (c) Tween 20 as a signal-boosting surfactant. [**Res-DT**] = 5.0 µM, [Pd²⁺] = 25 µM, [SDS] = 10.0 mM, [CTAB] = 1.0 mM, [Tween 20] = 0.09 mM, [PBS pH 7.4] = 10.0 mM in an aqueous solution containing 2% (v/v) DMSO.

Fig. S3. Precipitation profile illustrating the Pd²⁺ signaling of **Res-DT** in solutions containing SDS or Tween 20 as the surfactant under illumination with a red laser. [**Res-DT**] = 5.0 μ M, [Pd²⁺] = 25 μ M, [SDS] = 10.0 mM, [Tween 20] = 0.09 mM, [PBS pH 7.4] = 10.0 mM in an aqueous solution containing 2% (*v*/*v*) DMSO.

Fig. S4. Changes in the absorbance ratio of **Res-DT** (A_{572}/A_{452}) in the presence of common anions. Inset: UV–vis spectra of **Res-DT**. [**Res-DT**] = 5.0 µM, [Pd²⁺] = [A^{n–}] = 25 µM, [SDS] = 10.0 mM, [PBS pH 7.4] = 10.0 mM in an aqueous solution containing 2% (ν/ν) DMSO.

Fig. S5. Changes in the absorbance ratio of **Res-DT** (A_{572}/A_{452}) in the presence of common oxidants. [**Res-DT**] = 5.0 μ M, [Pd²⁺] = [oxidant] = 25 μ M, [SDS] = 10.0 mM, [PBS pH 7.4] = 10.0 mM in an aqueous solution containing 2% (v/v) DMSO. PAA = peracetic acid, TBHP = *tert*-butyl hydroperoxide, PB = sodium perborate, PC = sodium percarbonate, APS = ammonium persulfate.

Fig. S6. Effect of competitive anions on the Pd²⁺ signaling performance of **Res-DT**. [**Res-DT**] = 5.0 μ M, [Pd²⁺] = [Aⁿ⁻] = 25 μ M, [SDS] = 10.0 mM, [PBS pH 7.4] = 10.0 mM in an aqueous solution containing 2% (ν/ν) DMSO. **AR** denotes the absorbance ratio A_{572}/A_{452} .

Fig. S7. Changes in the fluorescence enhancement of **Res-DT** at 591 nm with the incorporation of common anions. Inset: fluorescence spectra of **Res-DT**. [**Res-DT**] = 5.0 μ M, [Pd²⁺] = [Aⁿ⁻] = 25 μ M, [SDS] = 10.0 mM, [PBS pH 7.4] = 10.0 mM in an aqueous solution containing 2% (ν/ν) DMSO. λ_{ex} = 485 nm.

Fig. S8. TLC profile of Res-DT (spot A), Res-DT with Pd²⁺ (spot B), and resorufin (spot C).

Fig. S9. FAB mass spectrum of the Pd^{2+} signaling product of **Res-DT**.

Fig. S10. FE-SEM image and associated EDX maps and data of the precipitate formed from the Pd²⁺ signaling of **Res-DT**.

Fig. S11. Changes in the absorbance ratio of **Res-DT** (A_{572}/A_{452}) in the presence of diverse Pd species. [**Res-DT**] = 5.0 μ M, [Pd species] = 25 μ M, [SDS] = 10.0 mM, [PBS pH 7.4] = 10.0 mM in an aqueous solution containing 2% (ν/ν) DMSO.

Fig. S12. Calibration curve for Pd²⁺ determination using the fluorescence emission at 591 nm. [**Res-DT**] = 5.0 μ M, [Pd²⁺] = 0–3.0 μ M, [SDS] = 10.0 mM, [PBS pH 7.4] = 10.0 mM in an aqueous solution containing 2% (ν/ν) DMSO. λ_{ex} = 485 nm.

Fig. S13. Time-dependent Pd^{2+} signaling activity of **Res-DT**, as characterized by the absorbance ratio of the signaling solution (A_{572}/A_{452}) . [**Res-DT**] = 5.0 µM, [Pd²⁺] = 25 µM, [SDS] = 10.0 mM, [PBS pH 7.4] = 10.0 mM in an aqueous solution containing 2% (v/v) DMSO.

Fig. S14. Plot illustrating the changes in color channel levels (RGB) in the presence of a Pdcontaining drug candidate. Inset: images of solutions with different Pd²⁺ concentrations

captured using a scanner. [**Res-DT**] = 5.0 μ M, [Pd²⁺ drug] = 0–2.0 μ M, [SDS] = 10.0 mM, [PBS pH 7.4] = 10.0 mM in an aqueous solution containing 2% (*v*/*v*) DMSO.

Fig. S15. ¹H NMR spectrum of Res-DT in CDCl₃ (600 MHz).

Fig. S16. ¹³C NMR spectrum of Res-DT in CDCl₃ (150 MHz).

Fig. S17. High-resolution mass spectrum of Res-DT.

References.

- [S1] F. A. Al-Saif, J. Y. Al-Humaidi, D. N. Binjawhar and M. S. Refat, J. Mol. Struct., 2020, 1218, 128547.
- [S2] M. Du, Y. Zhang, Y. Yu, H. Zhao, Y. Guo and Y. Yang, Anal. Methods, 2019, 11, 6053–6061.
- [S3] Y. Zhang, M. Yang and M. Ji, New J. Chem., 2020, 44, 20434.
- [S4] W. Luo, J. Li and W. Liu, Org. Biomol. Chem., 2017, 15, 5846-5850.
- [S5] Q. Xia, S. Feng, D. Liu and G. Feng, Sens. Actuator B-Chem, 2018, 258, 98-104.
- [S6] M. Kumar, N. Kumar and V. Bhalla, RSC Adv., 2013, 3, 1097–1102.
- [S7] J. Zhou, S. Xu, Z. Yu, X. Ye, X. Dong and W. Zhao, Dyes Pigment., 2019, 170, 107656.
- [S8] T. Chen, T. Wei, Z. Zhang, Y. Chen, J. Qiang, F. Wang and X. Chen, Dyes Pigment., 2017, 140, 392–398.
- [S9] W. Liu, J. Jiang, C. Chen, X. Tang, J. Shi, P. Zhang, K. Zhang, Z. Li, W. Dou, L. Yang and W. Liu, *Inorg. Chem.*, 2014, 53, 12590–12594.
- [S10] X. Li, H. Huang, Y. Zhu, H. Zhao and Z. Wang, RSC Adv., 2015, 5, 105810–105813.
- [S11] A. Higashi, N. Kishikawa, K. Ohyama and N. Kuroda, Tetrahedron Lett., 2017, 58, 2774–2778.
- [S12] M. E. Jun and K. H. Ahn, Org. Lett., 2010, 12, 2790–2793.
- [S13] M. G. Choi, J.-Y. Seo, E. J. Cho, S.-K. Chang, J. Photochem. Photobiol. A-Chem., 2022, 429, 113920.
- [S14] A. Ghosh, S. Nandi, A. Sengupta, A. Chattopadhyay, S. Lohar and D. Das, Inorg. Chim. Acta, 2015, 436, 52-56.