Supplementary material

Sustainable solar-driven electrochemical process for reforming lignocellulosic biomass effluent in high value-added products: green hydrogen, carboxylic acids and vanillic acid

Izaías Campos da Paixão^a, Jussara Câmara Cardozo^a, Mayra Kerolly Sales Monteiro^{b,d},

Amanda D. Gondim^a, Lívia N. Cavalcanti^a, Domingos Fabiano de Santana Souza^b,

Carlos A. Martínez-Huitle^{a,c*}, Elisama Vieira dos Santos^{a,b,c*}

^aRenewable Energies and Environmental Sustainability Research Group, Institute of Chemistry, Federal University of Rio Grande do Norte, Campus Universitário, Av.
Salgado Filho 3000, Lagoa Nova, CEP 59078-970, Natal, Rio Grande do Norte, Brazil.
^bChemical Engineering Department, Universidade Federal do Rio Grande do Norte, Senador Salgado Filho Avenue, S/N – Lagoa Nova, Natal, 59078-970, RN, Brazil.
^cNational Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT–DATREM), Institute of Chemistry, UNESP, P.O. Box 355, 14800 900 Araraquara, SP, Brazil.
^dHuman Resources Program of the National Agency for Petroleum, Natural Gas and Biofuels – PRH-26-ANP, Graduate Program in Chemical Engineering - PPGEQ, Lagoa Nova, Natal/RN, 59078-970, Brazil.

*Corresponding authors: Carlos A. Martínez-Huitle, Elisama V. dos Santos

E-mail: carlosmh@quimica.ufrn.br, elisama.vieira@ufrn.br

Figure S1. FTIR spectra of Soda lignin before and after electrolysis. The samples were chosen at the best experimental condition using 0.5 mol L^{-1} NaOH + 0.5 g L^{-1} Lignin at a current density of 100 mA cm⁻², identifying the more important signals.

Figure S2. Ionic chromatogram registered for the effluent sample after electrochemical conversion of lignocellulosic biomass by applying 100 mA cm⁻² in 0.5 mol L⁻¹ NaOH at 180 min of electrolysis.

Figure S3. Pareto graphical analysis of the effect of electrolysis time, current density, and electrolysis time.

Figure S4. Energy consumption (EC) required for treatment solution of lignin (0.5 g L⁻¹) in presence of 0.5 mol L⁻¹ of NaOH. Inset: EC as a function of COD removal. Conditions: (•) 40, (•) 70 and (\blacktriangle) 100 mA cm⁻², 0.5 g L⁻¹ lignin in 0.5 mol L⁻¹ NaOH.

