Supporting Information

Facile one-pot synthesis of biomass-derived activated carbon as an interlayer material for BAC/PE/Al₂O₃ dual coated separator in Li-S batteries

Seongho Jo^{b,†}, Jeong-Won Hong^{c,f,†}, Toshiyuki Momma^d , Yiseul Park^f , Junyoung Heo^{c,e} , Jun-woo Park^{c,e **}, Seongki Ahn^{a,*}

a. Department of Chemical Engineering, Hankyong National University, 27, Jungang-ro, Anseong-si, Gyeonggi-do, Republic of Korea

 b. Department of New Energy and Mining Engineering, Sangji University 83 Sangjidae-gil, Wonju-si, Gangwon-do, Republic of Korea.

c. Next-Generation Battery Research Center, Korea Electrotechnology Research Institute (KERI),
12, Jeongiui-gil, Seongsan-gu, Chawon-si, Gyeongsangnam-do, Republic of Korea

d. Graduate School of Advanced Science and Engineering, Waseda University, Okubo, Shinjukuku, Tokyo, 169-8555, Japan

e. Department of Electro-Functionality Materials Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.

f. Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.

*Corresponding author: Assistant professor Seongki Ahn, Department of Chemical Engineering, Hankyong National University, 27, Jungang-ro, Anseong-si, Gyeonggi-do, Republic of Korea, E-mail: skahn@hknu.ac.kr (S. Ahn)

**Co-Corresponding author, E-mail: parkjw@keri.re.kr (J.-W. Park)

Sample	BC	BAC-700	BAC-800	BAC-900
Surface Area (m ² g ⁻¹)	0.673	2.597	12.324	571.611

Table. S1 Surface area of BC and BAC powders depending on the activation temperature from 700 to 900 °C.

Figure S1. A schematic illustration of activation process by physical CO_2 activation.

Figure S2. (a) BET isotherm and (b) BJH pore size distributions of BC and BAC.

Figure S3. Yields of BAC powder by facile one-pot synthesis method at different activation temperature.

Figure S4. Cross-section SEM image of BAC/PE/Al₂O₃ separator.

Figure S5. Cycle Voltammogram of samples prepared with PE (a) and BAC/PE/Al₂O₃ separator (b) tested at 0.1 mV s⁻¹ for 5 cycles.

Figure S6. Charge and discharge curves of the Li-S coin-cell with $Q_{\rm H}$ and $Q_{\rm L}$ region.

Cycle	РЕ			BAC/PE/Al ₂ O ₃		
Cycle	Q _H	QL	Q_L/Q_H	Q _H	\mathbf{Q}_{L}	$Q_{\rm L}/Q_{\rm H}$
5	153	360	2.35	211	550	2.61
20	129	272	2.11	205	504	2.46
50	114	245	2.15	182	448	2.46
100	124	262	2.11	142	353	2.49

Table S2. $Q_{\rm H},\,Q_{\rm L},\,and\,Q_{\rm L}/Q_{\rm H}$ ratio values of both samples.

	BAC side	Al_2O_3 side
Before cycling		
After cycling		

Figure S7. Morphology of BAC/PE/Al₂O₃ separators before and after charge/discharge process.

Figure S8. Cross-section SEM image and EDS mapping of $BAC/PE/Al_2O_3$ separators after charge/discharge process.