Supplementary Information (SI) File

Formation of pyramidal structures through mixing gold and platinum atoms: The $Au_xPt_v^{2+}$ clusters with x + y = 10

Bao-Ngan Nguyen-Ha,^{1,2} Cam-Tu Phan Dang,^{3,4} Long Van Duong,^{2,5} My Phuong Pham-Ho,^{6,7} Minh Tho Nguyen,^{1,2,*} Nguyen Minh Tam^{8,*}

¹ Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam. Email: ngan.nguyenhabao@vlu.edu.vn; minhtho.nguyen@vlu.edu.vn

²Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam

³ Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam

⁴ Institute of Research and Development, Duy Tan University, Da Nang, Vietnam

⁵ Atomic Molecular and Optical Physics Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam

⁶ Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam

⁷ Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.

⁸ Faculty of Basic Sciences, University of Phan Thiet, 225 Nguyen Thong, Phan Thiet City, Binh Thuan, Vietnam. Email: nmtam@upt.edu.vn

Contents:

- i) Structures, relative energies (eV), and spin states (in bracket) of the low-lying isomers of $Au_xPt_y^{2+}$ with x + y =10) using B3PW91, TPSSh, BP86 and revTPSS/ aug-cc-pVTZ-PP + ZPE computations. (Figure S1 and S2)
- ii) Adaptive natural density partitioning (AdNDP) analysis of the $Au_xPt_y^{2+}$ clusters with x + y = 10 at B3PW91/ cc-pVTZ-PP theory level (Figures S3-S14).
- iii) Calculated density of states (DOS) of the $Au_xPt_y^{2+}$ (x + y = 10) at B3PW91/aug-ccpVTZ-PP theory level (Figure S15).
- iv) Optimized geometrical shapes and Cartesian coordinates of the lowest-lying $Au_xPt_y^{2+}$ (x + y = 10) isomers calculated at B3PW91/ aug-cc-pVTZ-PP method (Table S1).

Method	Structures				
	Au_{10}^{2+} (singlet)				
	Au ₉ Pt ²⁺ .A	Au ₉ Pt ²⁺ .B	Au ₉ Pt ²⁺ .C	Au ₉ Pt ²⁺ .D	
B3PW91	0.00 (doublet)	0.42 (doublet)	0.42 (doublet)	0.47 (doublet)	
TPSSh	0.00 (doublet)	0.42 (doublet)	0.37 (doublet)	0.30 (doublet)	
BP86	0.00 (doublet)	0.31 (doublet)	0.48 (doublet)	0.49 (doublet)	
revTPSS	0.00 (doublet)	0.37 (doublet)	0.35 (doublet)	0.26 (doublet)	
	Au ₈ Pt ₂ ²⁺ .A	Au ₈ Pt ₂ ²⁺ .A	Au ₈ Pt ₂ ²⁺ .B	Au ₈ Pt ₂ ²⁺ .D	
B3PW91	0.00 (triplet)	0.07 (singlet)	0.17 (triplet)	0.18 (singlet)	
TPSSh	0.00 (triplet)	0.11 (singlet)	0.16 (triplet)	0.20 (triplet)	
BP86	0.00 (triplet)	0.10 (singlet)	0.15 (triplet)	0.13 (triplet)	
revTPSS	0.00 (triplet)	0.12 (singlet)	0.15 (triplet)	0.24 (triplet)	
	Au ₇ Pt ₃ ²⁺ .A	Au ₇ Pt ₃ ²⁺ .B	Au ₇ Pt ₃ ²⁺ .B	Au ₇ Pt ₃ ²⁺ .C	
B3PW91	0.00 (quartet)		0.52 (quartet)	0.52 (quartet)	
TPSSh	0.00 (quartet)	0.22 (doublet)	0.49 (quartet)	0.44 (quartet)	
BP86	0.00 (quartet)	0.16 (doublet)	0.37 (quartet)	0.39 (quartet)	
revTPSS	0.00 (quartet)		0.42 (quartet)	0.38 (quartet)	
	AucPt. ²⁺ .A	Au ₆ Pt ₄ ²⁺ .B	Au ₆ Pt ₄ ²⁺ .C	Au ₆ Pt ₄ ²⁺ .D	
B3PW91	0.00 (quintet)	0.17 (quintet)	0.34 (quintet)	0.46 (quintet)	
TPSSh	0.00 (quintet)	0.17 (quintet)	0.26 (quintet)	0.44 (quintet)	
BP86	0.00 (quintet)	0.17 (quintet)	0.04 (quintet)	0.25 (quintet)	
revTPSS	0.00 (quintet)	0.16 (quintet)	0.09 (quintet)	0.33 (quintet)	
	Au ₅ Pt ₅ ²⁺ .A	Au _s Pt _s ²⁺ .B	Au ₅ Pt ₅ ²⁺ .C	Au ₅ Pt ₅ ²⁺ .C	
B3PW91	0.00 (sextet)	0.11 (sextet)	0.15 (quartet)	0.17 (sextet)	
TPSSh	0.00 (sextet)	0.14 (sextet)	0.13 (quartet)	0.15 (sextet)	
BP86	0.03 (sextet)	0.05 (sextet)	0.00 (quartet)	0.05 (sextet)	
revTPSS	0.00 (sextet)	0.02 (sextet)	0.03 (quartet)	0.08 (sextet)	
CCSD(T) (*)	0.00 (sextet)	0.13 (sextet)			

Figure S1. Structures, relative energies (eV), and spin states (in bracket) of the most stable isomers of $Au_xPt_y^{2+}$ with x + y = 10 and y = 0 - 5) using B3PW91, TPSSh, BP86 and revTPSS/ aug-cc-pVTZ-PP + ZPE computations. (*) is calculated at CCSD(T)/ cc-pVDZ-PP method. Yellow ball = Au and white ball = Pt.

Method	Structures				
	Au ₄ Pt ₆ ²⁺ .A/L	Au ₄ Pt ₆ ²⁺ .B	Au4Pt ₆ ²⁺ .A	Au ₄ Pt ₆ ²⁺ .D	
B3PW91	0.00 (septet)	0.27 (septet)	0.48 (quintet)	0.61 (quintet)	
TPSSh	0.00 (septet)	0.28 (septet)	0.20 (quintet)	0.55 (quintet)	
BP86	0.00 (septet)	0.22 (septet)	0.12 (quintet)	0.25 (quintet)	
revTPSS	0.00 (septet)	0.26 (septet)	0.17 (quintet)	0.55 (quintet)	
	Au ₃ Pt ₇ ²⁺ .A/L	Au ₃ Pt ₇ ²⁺ .B	Au ₂ Pt ₈ ²⁺ .A	Au ₂ Pt ₈ ²⁺ .B	
B3PW91	0.00 (octet) 0.10 (sextet) 0.28 (quartet)	0.11 (octet)	0.00 (nonet) 0.36 (septet)	0.56 (nonet) 0.64 (septet)	
TPSSh	0.01 (octet)	0.00 (sextet) 0.05 (octet)	0.00 (nonet) 0.35 (septet)	0.59 (nonet) 0.56 (septet)	
BP86	0.09 (sextet) 0.10 (octet)	0.00 (sextet) 0.04 (octet)	0.00 (nonet)	0.08 (quintet) 0.16 (septet)	
revTPSS	0.10 (octet) 0.13 (sextet) 0.28 (quartet)	0.00 (sextet) 0.06 (octet)	0.00 (nonet) 0.28 (septet)	0.26 (quintet) 0.42 (nonet)	
	AuPt ₉ ²⁺ .A	AuPt,	2+.B	Pt ₁₀ ²⁺	
B3PW91	0.00 (10-et) 0.14 (octet) 0.17 (sextet)	0.80 (qu	uartet)	0.00 (11-et) 0.10 (nonet) 0.30 (septet)	
TPSSh	0.00 (10-et) 0.07 (octet) 0.12 (sextet)	0.62 (qu	uartet)	0.00 (11-et) 0.07 (nonet) 0.04 (septet)	
BP86	0.00 (octet) 0.05 (sextet) 0.11 (10-et)	0.13 (qu	uartet)	0.00 (septet) 0.00 (quintet) 0.30 (nonet) 0.30 (11-et)	
revTPSS	0.07 (10-et) 0.00 (octet) 0.07 (sextet)	0.29 (quartet) 0.29 (septet) 0.29 (septet) 0.20 (nonet) 0.00 (septet)		0.40 (11-et) 0.26 (nonet) 0.00 (septet)	

Figure S2. Structures, relative energies (eV), and spin states (in bracket) of the most stable isomers of $Au_xPt_y^{2+}$ with x + y = 10 and y = 6 - 10) using B3PW91, TPSSh, BP86 and revTPSS/ aug-cc-pVTZ-PP + ZPE computations. Yellow ball = Au and white ball = Pt.

Figure S3: AdNDP analysis showing muti-center bonds in the Au₁₀²⁺ cluster at singlet state, calculated at B3PW91/ cc-pVTZ-PP theory level.

Figure S4: AdNDP analysis showing muti-center bonds in the Au₉Pt²⁺.A cluster at doublet state, calculated at B3PW91/ cc-pVTZ-PP theory level.

Figure S5: AdNDP analysis showing muti-center bonds in the $Au_8Pt_2^{2+}$. A cluster at triplet state, calculated at B3PW91/ cc-pVTZ-PP theory level.

Figure S6: AdNDP analysis showing muti-center bonds in the Au₇Pt₃²⁺.A cluster at quartet state, calculated at B3PW91/ cc-pVTZ-PP theory level.

Figure S7: AdNDP analysis showing muti-center bonds in the $Au_6Pt_4^{2+}$. A cluster at quintet state, calculated at B3PW91/ cc-pVTZ-PP theory level.

Figure S8: AdNDP analysis showing muti-center bonds in the Au₅Pt₅²⁺.A cluster at sextet state, calculated at B3PW91/ cc-pVTZ-PP theory level.

Figure S9: AdNDP analysis showing muti-center bonds in the Au₅Pt₅²⁺.B cluster at sextet state, calculated at B3PW91/ cc-pVTZ-PP theory level.

β-electrons

Figure S10: AdNDP analysis showing muti-center bonds in the $Au_4Pt_6^{2+}$. A cluster at septet state, calculated at B3PW91/ cc-pVTZ-PP theory level.

Figure S11: AdNDP analysis showing muti-center bonds in the $Au_3Pt_7^{2+}$. A cluster at octet state, calculated at B3PW91/ cc-pVTZ-PP theory level.

Figure S12: AdNDP analysis showing muti-center bonds in the Au₂Pt₈²⁺.A cluster at nonet state, calculated at B3PW91/ cc-pVTZ-PP theory level.

Figure S13: AdNDP analysis showing muti-center bonds in the AuPt₉²⁺.A cluster at 10-et state, calculated at B3PW91/ cc-pVTZ-PP theory level.

Figure S14: AdNDP analysis showing muti-center bonds in the Pt_{10}^{2+} . A cluster at 11-et state, calculated at B3PW91/cc-pVTZ-PP theory level.

Figure S15: Calculated density of states (DOS) of $Au_xPt_y^{2+}(x+y=10)$ at B3PW91/aug-cc-pVTZ-PP level. Positive and negative DOS represent spin-up and spin-down electrons, respectively.

Isomer	Coordinates		
2 8 40 6 40 6 40 5 3 Au₁₀²⁺ (T_d) singlet	Au-1.909196141.909196141.90919614Au1.90919614-1.909196141.90919614Au1.909196141.90919614-1.90919614Au-1.90919614-1.90919614-1.90919614Au-0.000000002.026422150.00000000Au2.02642215-0.000000000.00000000Au-0.00000000-2.02642215-0.00000000Au-0.00000000-2.02642215-0.00000000Au-0.00000000-2.02642215-0.00000000Au-2.026422150.000000000.00000000Au-2.026422150.000000002.02642215Au0.00000000-0.000000002.02642215		
$ \begin{array}{c} 5 \\ 6 \\ 6 \\ 9 \\ 7 \\ 1 \\ C_{2\nu}) \\ doublet \end{array} $	Pt0.0000000-0.0000000-1.90497415Au0.00000002.63733420-1.95262215Au1.455039111.44306111-0.00612800Au-1.455039111.44306111-0.00612800Au2.70442921-0.000000001.90662515Au1.45503911-1.44306111-0.00612800Au2.70442921-0.000000001.90662515Au1.45503911-1.44306111-0.00612800Au-0.00000000-2.63733420-1.95262215Au-1.45503911-1.44306111-0.00612800Au-2.704429210.000000001.90662515Au-0.000000000.000000001.99736915		
Au₈Pt₂²⁺.A (C ₃) triplet	Pt1.141442810.817703301.25838410Pt1.141442810.81770330-1.25838410Au1.14144281-1.445897872.68187220Au1.14144281-1.44589787-2.68187220Au1.14144281-1.44589787-2.68187220Au-1.157108361.638085360.00000000Au-1.18545936-0.866395831.42614911Au1.16466782-1.769580900.00000000Au-3.31907953-0.021446770.00000000Au1.145564813.162824480.00000000Au-1.18545936-0.86639583-1.42614911		
$\begin{array}{c} 9\\ \hline 2\\ \hline 2\\ \hline 4\\ \hline 5\\ \hline 5\\ \hline 6\\ \hline Au_7 Pt_3^{2+} \cdot A\\ (C_{3\nu})\\ quartet \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		

Table S1: Optimized geometrical shapes and Cartesian coordinates of the lowest-lying $Au_xPt_y^{2+}$ (x + y = 10) isomers calculated at B3PW91/aug-cc-pVTZ-PP method.

9 1 5 3 4 6 8 4 6 8 4 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 6 7 7 7 7 7 7 7 7 7 7	Pt1.294838101.294838100.00000000Pt-1.29483810-1.294838100.00000000Pt-1.294838101.294838100.00000000Pt1.29483810-1.294838100.00000000Au0.000000000.000000002.26016317Au0.000000000.00000000-2.26016317Au2.668863210.00000000-1.87859514Au-2.668863210.00000000-1.87859514Au0.000000002.668863211.87859514Au0.00000000-2.668863211.87859514
7 6 4 5 6 4 5 8 Au₅Pts²⁺.A (C ₂ _y) sextet	Pt-1.521361121.29029010-0.01516100Pt0.00000000.0000000-1.65814813Pt-1.52136112-1.29029010-0.01516100Pt1.52136112-1.29029010-0.01516100Pt1.521361121.29029010-0.01516100Pt1.521361121.29029010-0.01516100Au0.000000000.000000002.09950616Au-0.00000000-2.668686201.69694013Au2.83403722-0.00000000-1.89817514Au0.000000002.668686201.69694013
8 6 3 7 4 1 1 0 5 5 1 1 1 1 1 1 1 1 1 1	Pt0.012644001.392503111.29322510Pt0.012644001.39250311-1.29322510Pt-1.880178140.092128010.00000000Pt-1.797345142.65057320-0.00000000Pt1.860051140.10289601-0.00000000Au0.01264400-1.52859812-1.44141611Au0.01264400-1.528598121.44141611Au0.01264400-2.605028200.00000000Au1.875919140.05144700-2.67775920Au1.875919140.051447002.67775920
$ \begin{array}{c} $	Pt1.08191108-0.795681061.29798410Pt1.08191108-0.79568106-1.29798410Pt1.148789091.620649130.00000000Pt-1.068805080.857484061.31265310Pt-0.939990073.029643230.00000000Pt-1.068805080.85748406-1.31265310Au-1.068805080.85748406-1.31265310Au-1.06880508-1.472019112.67873320Au3.26846125-0.054806000.0000000Au-1.06880508-1.47201911-2.67873320Au-1.36288810-1.71462513-0.0000000

Au₃Pt₇²⁺.A (C ₁) septet	Pt Pt Pt Pt Pt Pt Au Au Au	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
2 5 7 4 5 7 4 5 7 4 5 7 4 9 Au₂Pt₈²⁺.A (C ₂ _ν) nonet	Pt Pt Pt Pt Pt Pt Au Au	0.000000002.554942181.82919213-0.00000000-2.554942181.82919213-0.00000000-0.00000000-1.895133141.34354210-1.396487100.03267100-1.34354210-1.396487100.03267100-1.343542101.396487100.032671000.000000000.000000001.917632141.343542101.396487100.032671002.62910219-0.00000000-1.88166114-2.629102190.00000000-1.88166114
$6^{3} 5$ $6^{2} 1$ $8^{7} 4$ $AuPt_{9}^{2^{+}}A$ $(C_{3,y})$ dectet	Pt Pt Pt Pt Pt Pt Pt Au	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
2 9 6 8 5 4 1 9 6 7 4 1 1 1 1 1 1 1 1 1 1	Pt Pt Pt Pt Pt Pt Pt Pt Pt	0.000000000.00000000-1.722337120.000000002.53834418-1.89170114-0.00000000-2.53834418-1.89170114-2.596710180.000000001.71971012-1.30402909-1.482962110.066126000.000000000.000000001.801816131.30402909-1.482962110.066126000.000000001.801816131.304029091.482962110.066126001.30402909-1.482962110.066126002.59671018-0.00000001.71971012