Highly sensitive and selective detection of triphosgene with a 2-(2'-hydroxyphenyl)benzimidazole derived fluorescent probe

Wen-Zhu Bi,*a,b Yang Geng,c Wen-Jie Zhang,a Chen-Yu Li,a Chu-Sen Ni,a Qiu-Juan Ma,*a,b Su-Xiang Feng,*b,d,e Xiao-Lan Chenf and Ling-Bo Quf

a School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China, 450046. E-mail: biwenzhu2018@hactcm.edu.cn; maqiujuan104@126.com
b Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application, Zhengzhou, China, 450046. E-mail: fengsx221@163.com
c Department of Pharmacy, Zhengzhou Railway Vocational and Technical College, Zhengzhou, China, 450046.
d Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China, 450046
e Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, China, 450046
f College of Chemistry, Zhengzhou University, Zhengzhou, China, 450052

Contents

1. Optimization of triethylamine for the generation of phosgene……………………………S2
2. Investigation of the effect of solvents……………………………………………………………S2
3. Measurement of the fluorescence quantum yield…………………………………………..S3
4. Measurement of the LoD for 4-AHBI…………………………………………………………..S3
5. Fluorescence spectra of 4-AHBI with triphosgene in the presence of interfering compounds……………………………………………………………………………………..S4
6. Table S1 Determination of triphosgene in the presence of interfering compounds…..S4
7. Exploration of the sensing mechanism…………………………………………………………..S4
8. 1H NMR, 13C NMR and HRMS copies of 4-AHBI……………………………………………….S7
1. Optimization of triethylamine for the generation of phosgene

Figure S1 a) Fluorescence spectra of 10 µM 4-AHBI solutions containing triethylamine (TEA) (0-1 µM) upon addition of triphosgene (3.5 µM), λ(ex) = 357 nm, slit width = 2.5/2.5 nm; b) Fluorescence intensities @386 nm vs concentration of TEA.

2. Investigation of the effect of solvents

Figure S2 The fluorescence spectra of 4-AHBI (10 µM) in different solvents without (black) and with (red) triphosgene (3.5 µM). a: CH₂Cl₂ (λ(ex) = 357 nm, λ(em) = 386 nm), b: CHCl₃ (λ(ex) = 343 nm, λ(em) = 440 nm), c: MeOH (λ(ex) = 330 nm, λ(em) = 377 nm), d: EtOH (λ(ex) = 339 nm, λ(em) = 425 nm), e: MeCN (λ(ex) = 357 nm, λ(em) = 386 nm), f: acetone (λ(ex) = 357 nm, λ(em) = 383 nm), g: EtOAc (λ(ex) = 357 nm, λ(em) = 386 nm), h: DMF (λ(ex) = 346 nm, λ(em) = 444 nm), i: DMSO (λ(ex) = 346 nm, λ(em) = 441 nm). Slit width = 2.5/2.5 nm.
3. Measurement of the fluorescence quantum yield

Figure S3 Measurement of the fluorescence quantum yields (Φf) of 4-AHBI. 4-AHBI were determined in CH$_2$Cl$_2$ with solvent refractive index correction. Quinine sulfate in 1.0 M H$_2$SO$_4$ was used as the reference (Φf = 54%) at an excitation wavelength of 340 nm. The fluorescence quantum yield was calculated by the following equation: Φ$_x$ = Φ$_s$ (F$_x$/F$_s$)(A$_s$/A$_x$)(n$_x$/n$_s$)2. Where x and s indicate the 4-AHBI and quinine sulfate, respectively, F is the area of the fluorescence peak, A is the optical density at the excitation wavelength and n is the refractive index of the solvent.

4. Measurement of the LoD for 4-AHBI

Figure S4 Measurement of the LoD for 4-AHBI to triphosgene. a) The emission intensities at 386 nm vs triphosgene concentration. Equation: y = 2416.7x-40.195, R2 = 0.9948; b) Ten times of the blank experiment to evaluate the standard deviation σ (0.06728). The triphosgene detection limit was determined to be 0.08 nM (LoD = 3σ/k, where σ is the standard deviation of the blank experiment, and k is the slope of the relationship between the emission intensities and triphosgene concentration.)
5. Fluorescence spectra of 4-AHBI with triphosgene in the presence of interfering compounds

![Fluorescence spectra](image)

Figure S5 Fluorescence spectra of 4-AHBI (10 µM) in CH$_2$Cl$_2$ with triphosgene (3.5 µM) in the presence of various analytes (5 µM). λ_{ex} = 357 nm.

6. Table S1 Determination of triphosgene in the presence of interfering compounds

<table>
<thead>
<tr>
<th>Interferents compounds (µM)</th>
<th>Triphosgene added (µM)</th>
<th>Triphosgene found (µM)</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>(COCl)$_2$</td>
<td>3.5</td>
<td>2.8</td>
<td>80.1%</td>
</tr>
<tr>
<td>CH$_3$COCl</td>
<td>3.5</td>
<td>2.7</td>
<td>77.1%</td>
</tr>
<tr>
<td>SOCl$_2$</td>
<td>3.5</td>
<td>3.1</td>
<td>88.6%</td>
</tr>
<tr>
<td>TsCl</td>
<td>3.5</td>
<td>2.8</td>
<td>79.6%</td>
</tr>
<tr>
<td>DCP</td>
<td>3.5</td>
<td>3.1</td>
<td>88.6%</td>
</tr>
<tr>
<td>HOAc</td>
<td>3.5</td>
<td>3.2</td>
<td>91.4%</td>
</tr>
<tr>
<td>POCl$_3$</td>
<td>3.5</td>
<td>3.9</td>
<td>111.4%</td>
</tr>
<tr>
<td>SO$_2$Cl$_2$</td>
<td>3.5</td>
<td>3.0</td>
<td>84.3%</td>
</tr>
<tr>
<td>HCl</td>
<td>3.5</td>
<td>3.1</td>
<td>88.6%</td>
</tr>
</tbody>
</table>

7. Exploration of the sensing mechanism

The reaction mixture was analysed by HPLC with a High-resolution mass spectra (HRMS) on Agilent Technologies 6530 Accurate mass Q-TOF LC/MS using ESI as ion source. A minor peak at 1.959 min corresponded with the remnant 4-AHBI (HRMS: [M+H]$^+$: calcd for C$_{13}$H$_{12}$N$_3$O: 226.0975, found: 226.0975.). A major peak at 3.812 min was obviously obtained and the HRMS spectrum showed the m/z 252.0776, which should be the single sensing product 4-AHBI-CO (for C$_{14}$H$_{10}$N$_3$O$_2$: M+H$^+$: calculated 252.0768).

The sensing product 4-AHBI-CO was synthesized as follows: 4-AHBI (0.113 g, 0.5 mmol) was stirred and dissolved in dry CH$_2$Cl$_2$ (25 mL) at 0 °C, then triphosgene (0.15 g,
0.5 mmol) in dry CH₂Cl₂ (10 mL) was added over a period of 10 min. Then the mixture was continually stirred at 0 °C until the completion of the reaction. Saturated NaHCO₃ aqueous solution was added into the mixture and extracted with CH₂Cl₂ (20 mL × 2). The organic phase was collected, dried over anhydrous Na₂SO₄ and evaporated to give the crude product. The crude product was further purified by column chromatography (ethyl acetate : petroleum ether = 1 : 5) to give the sensing product (0.096 g, yield 78%) as a white solid.

Figure S6 HPLC chromatogram of the reaction mixture (up) and HRMS spectrum of the peak at 1.959 min (middle) and 3.812 min (down).
Figure S7 1H NMR of 4-AHBI-CO.

Figure S8 HRMS copy of 4-AHBI-CO.
8. 1H NMR, 13C NMR and HRMS copies of 4-AHBI

Figure S9 1H NMR copy of 4-AHBI

Figure S10 13C NMR copy of 4-AHBI
Figure S11 HRMS copy of 4-AHBI