Supporting Information

Efficient synthesis of new indenopyridotriazine [4.3.3]propellanes and spiroindenopyridotriazine-4*H*-pyran derivatives

Monireh Rezaei,^a and Mohammad Bayat^{a,*}

Department of science, Imam Khomeini International University, P.O. Box 14115-175, Qazvin,

Iran

Table of Contents

Title	Page
Title, author's name, address and table of contents	1
General remarks	2
Figure 1. Structure of all products 6a-l	3
Figure 2. Structure of all products 8a-d	3
¹ H and ¹³ C NMR and IR spectrums of 3a	4-6
¹ H and ¹³ C NMR and IR and Mass spectrums of 6a	7-11
¹ H and ¹³ C NMR and IR and Mass spectrums of 6b	12-15
¹ H and ¹³ C NMR and IR and Mass spectrums of 6c	16-20
¹ H and ¹³ C NMR and IR and Mass spectrums of 6d	21-24
¹ H NMR and IR and Mass spectrums of 6e	25-27
¹ H and ¹³ C NMR and IR and Mass spectrums of 6f	28-31
¹ H and ¹³ C NMR and IR and Mass spectrums of 6g	32-35
¹ H and ¹³ C NMR spectrums of 6h	36-37
¹ H and ¹³ C NMR spectrums of 6i	38-40
¹ H and ¹³ C NMR spectrums of 6 j	41-42
¹ H and ¹³ C NMR and IR spectrums of 6 k	43-45
¹ H and ¹³ C NMR and IR spectrums of 6 l	46-48
¹ H and ¹³ C NMR and IR and Mass spectrums of 8a	49-53
¹ H and ¹³ C NMR and IR and Mass spectrums of 8b	54-57
¹ H and ¹³ C NMR and IR spectrums of 8 c	58-60
¹ H and ¹³ C NMR spectrums of 8d	61-62

Experimental Section

General remarks:

All commercially available reagents and other solvents were purchased from Aldrich and Merck Chemical Co. and used without further purification. The NMR spectra were recorded with a Bruker DRX-300 AVANCE instrument (300 MHz for ¹H and 75.4 MHz for ¹³C) with DMSO- d_6 as solvent. Chemical shifts are given in ppm (*d*) relative to the internal TMS, and the coupling constant (*J*) reported in hertz (Hz). Melting points were measured with an electrothermal 9100 apparatus. Mass spectra were recorded with an Agilent 5975C VL MSD with a Triple-Axis detector operating at an ionization potential of 70 eV. IR spectra were measured with a Bruker Tensor 27 spectrometer.

Figure 1. Structure of all products 6a-l

Figure 2. Structure of all products 8a-d

The structures all of the products **6a-l** and **8a-d** were deduced from their IR, ¹H NMR, ¹³C NMR and Mass spectra (see the Supporting Information).

¹H NMR of 3a

¹³C NMR of 3a

IR of 3a

¹H NMR of 6a (D₂O exchangeable)

File :C:\MSDCHEM\3\DATA\Snapshot\140110151.D Operator : Acquired : 2 Jan 2007 00:54 using AcqMethod test.M Instrument : MSD Sample Name: T8 Misc Info : Vial Number: 1

MS of 6a

¹H NMR of 6b

¹³C NMR of 6b

IR of 6b

MS of 6b

¹H NMR of 6c (D₂O exchangeable)

IR of 6c

MS of 6c

IR of 6d

IR of 6e

MS of 6e

IR of 6f

MS of 6f

IR of 6g

MS of 6g

¹H NMR of 6h

IR of 6i

¹H NMR of 6j

¹³C NMR of 6j

¹³C NMR of 6k

IR of 6k

¹³C NMR of 6l

¹H NMR of 8a

¹H NMR of 8a (D₂O exchangeable)

IR of 8a

MS of 8a

¹H NMR of 8b

IR of 8b

MS of 8b

¹³C NMR of 8c

IR of 8c

