Supporting Information

Application of dandelion-like $Sm_2O_3/Co_3O_4/rGO$ in high performance supercapacitors

S1: Synthesis of Sm₂O₃/Co₃O₄/NF composite electrode material

0.75 mmol (0.333 g) of Sm(NO₃)₃·6H₂O, 0.75 mmol (0.218 g) of Co(NO₃)₂·6H₂O, and 1 mmol (0.060 g) of urea were added to 15 mL of distilled water and stirred vigorously with a magnetic stirrer for 1 h. The mixture was then transferred to a 25 mL tetrafluoroethylene lined autoclave containing a clean nickel foam (NF), and the reaction was carried out at a high temperature of 180 °C for 9 h. After completion of the reaction, the autoclave cooled to room temperature. The Sm₂O₃/Co₃O₄/NF precursor was repeatedly washed with deionized water and ethanol. The washed precursor was then dried at 60 °C for 8 h in an oven. Finally, the solid was annealed at 300 °C for 2 h in a muffle furnace to obtain the Sm₂O₃/Co₃O₄/NF composite electrode material.

S2: Synthesis of Co₃O₄/rGO/NF composite electrode material

Dissolve 0.75 mmol of Co(NO₃)₂·6H₂O and 1 mmol of urea in 7.5 mL of deionized water. Stir the mixture using a magnetic stirrer for 1 h to form a homogeneous solution. Then, 7.5 mL of a graphene oxide suspension with a concentration of 2 mg·mL⁻¹ was added to the solution, followed by stirring for an additional 1 h. The treated NF and the mixed solution were then placed in a polytetrafluoroethylene high-pressure reactor and reacted at 180 °C for 9 h in an oven. The precursor was washed with ethanol and deionized water, followed by drying at 60 °C for 8 h. Finally, anneal the sample in a muffle furnace at 300 °C for 2 h to produce the Co₃O₄/rGO/NF composite electrode material.

S3: Synthesis of Sm₂O₃/rGO/NF composite electrode material

A homogeneous solution was obtained by dissolving 0.75 mmol Sm(NO₃)₃·6H₂O and 1 mmol urea in 7.5 ml distilled water and stirring magnetically for 1 h. The graphene solution (7.5 mL, 2 mg·mL⁻¹) was mixed with the above solution and stirred

vigorously for 1 h. The cleaned NF was transferred with the solution into a 25 mL tetrafluoroethylene-lined autoclave, heated at 180 °C for 9 h, and then cooled naturally to room temperature. The Sm₂O₃/rGO/NF precursor was then washed several times with ethanol and distilled water and dried at 60 °C for 8 h. The Sm₂O₃/rGO/NF precursor was then annealed in a muffle furnace at 300 °C for 2 h to obtain the Sm₂O₃/rGO/NF composite electrode material.

S4: Synthesis of rGO/NF composite electrode material

0.75 mmol of Sm(NO₃)₃·6H₂O and 1 mmol of urea were mixed in 7.5 ml of distilled water. The solution and the cleaned nickel foam were then transferred to a 25 mL tetrafluoroethylene-lined autoclave and heated at 180 °C for 9 h. The rGO/NF precursor was washed with ethanol and deionized water and then dried in an oven at 60 °C for 8 h. Finally, it was annealed at 300 °C for 2 h in a muffle furnace to obtain the rGO/NF composite electrode material.

Results and discussion

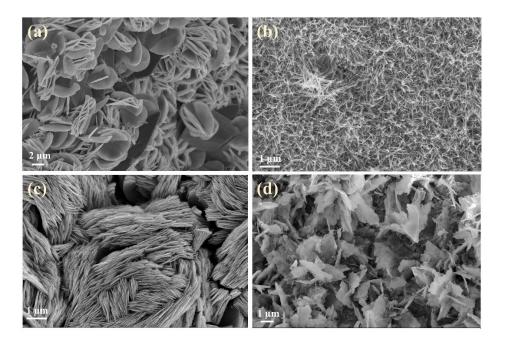


Fig. S1 The SEM images of various materials: (a) Co_3O_4/NF , (b) CGN, (c) Sm_2O_3/NF , and (d) SCN

Fig. S2 EDS elemental mapping images of the composite (C, O, Ni, Co, and Sm)

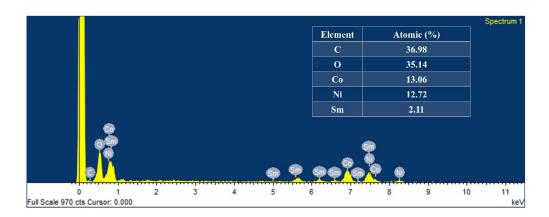


Fig. S3 EDS of SCGN

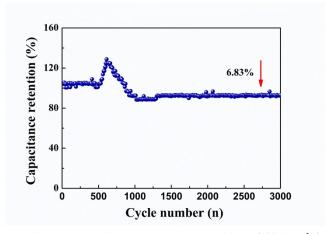


Fig. S4 The capacitance retention at a current density of 10 A·g-1 for 3000 cycles.

Table S1 Comparison of electrochemical performances of SCGN electrode in our work with previous.

Materials	Specific capacitance	capacitance retention (%)	Stability (%)	Current density	Refs.
Co ₃ O ₄ @MnO ₂ composites	671 F·g ⁻¹ at 1.0 A·g ⁻¹	84% (1 to 10 A·g ⁻¹)	95.2% (2000 cycles)	$1 \; { m A \; g^{-1}}$	1
Co ₃ O ₄ -CeO ₂ composites	1288.3F·g ⁻¹ at 2.5 A·g ⁻¹	80.4% (1 to 6 A·g ⁻¹)	98% (6000 cycles)	4 A·g ^{−1}	2
Co ₃ O ₄ /NF composites	2053.1 F·g ⁻¹ at 1.0 A·g ⁻¹	54.2% (1 to 40·A g ⁻¹)	93.3% (10000 cycles)	2 A·g ⁻¹	3
SmN-RGO composites	268 F·g ⁻¹ at 2.0 A·g ⁻¹		99% (4000 cycles)	$2 \text{ A} \cdot \text{g}^{-1}$	4
SmWO ₄ composites	$326 \text{ F} \cdot \text{g}^{-1}$ at $2.0 \text{ mV} \cdot \text{s}^{-1}$	47% (1 to 16 A·g ⁻¹)	89.9% (3000 cycles)	$20 \mathrm{A} \cdot \mathrm{g}^{-1}$	5
SmCoO ₃ /rGO composite	69.3 $F \cdot g^{-1}$ at 1.0 A g^{-1}		74.28% (15000 cycles)	1 A·g ^{−1}	6
Sm ₂ O ₃ /Co ₃ O ₄ /rGO composites	3448 F·g ⁻¹ at 1 A·g ⁻¹	44.8% (1 to 20 A·g ⁻¹)	93.2% (3000 cycles)	10 A·g ⁻¹	This work

- 4. A. S. Dezfuli, M. R. Ganjali and H. R. Naderi, *Applied Surface Science*, 2017, **402**, 245-253.
- 5. A. Sobhani-Nasab, H. Naderi, M. Rahimi-Nasrabadi and M. R. Ganjali, *Journal of Materials Science: Materials in Electronics*, 2017, **28**, 8588-8595.
- 6. M. Isacfranklin, R. Yuvakkumar, G. Ravi, S. I. Hong, D. Velauthapillai, M. Thambidurai, C. Dang, T. S. Algarni and A. M. Al-Mohaimeed, *Carbon*, 2021, 172, 613-623.

^{1.} H. Che, Y. Lv, A. Liu, J. Mu, X. Zhang and Y. Bai, *Ceramics International*, 2017, **43**, 6054-6062.

^{2.} C. Wei, K. Liu, J. Tao, X. Kang, H. Hou, C. Cheng and D. Zhang, *Chem Asian J*, 2018, **13**, 111-117.

^{3.} G. Wei, L. Yan, H. Huang, F. Yan, X. Liang, S. Xu, Z. Lan, W. Zhou and J. Guo, *Applied Surface Science*, 2021, **538**, 14932.

References