Electronic Supplementary Material (ESI) for RSC Advances.

Supplementary data

Adsorptive removal of Aflatoxin B₁ from Water and Edible Oil by Dopamine-Grafted Biomass Chitosan-Iron-Cobalt Spinel Oxides Nanocomposite : Mechanism, Kinetic, Equilibrium, Thermodynamics, and Oil Quality

N.Abasi^a, A.R.Faraji^{b,c,*}, A. Davood^a

^a Department of Medicinal Chemistry, Faculty of Pharmaceutical, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.

^bDepartment of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.

°Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.

Text S1. Characterization instruments

The surface and pore size of adsorbents were investigated by SEM (Transmission Electron Microscopy, Tecnai F30TEM operating at 300 *Kv*), and TEM (Transmission Electron Microscopy, Philips 501 microscope ,80 kV voltage). The XRD patterns were recorded on a powder X-ray diffractometer (X-Ray Diffraction, Bruker D8 Advance diffractometer, CuKa radiation, 40 Kv, 20 miliamper, Time Per Step=1 s; scan step 0.05; 20 from 10 to 70). Fourier-Transform Infrared, (Shimadzu Varian 4300Fourier Transform Infrared spectrometer, KBr pellets) was used to collect

the FT-IR spectra of DC/CFSO NCwith potassium bromide pellets. The DLS (Dynamic Light Scattering, (DLS, Zetasizer Nano-ZS-90 (ZEN 3600, Malvern Instrument) provided direct visualization of the size of the DC/CFSO NCNPs. A vibrating sample magnetometry (Vibrating-Sample Magnetometer, BHV-55 VSM) was employed to assess magneticproperties of samples. Thermal stability of samples was assessed by TGA (Thermogravimetric Analysis, Perkin-Elmer TG-DTA 6300, heating rate of 15 °C/min).

Text 2S. Safety precautions

Protective masks, eye protection, gloves, and clothing were worn as safety precautions while working with AFB₁ stock solutions and executing the related investigation. The AFB₁ solution should be keep in a well-ventilated place and all the tests performed under the standard hood. Also, the hands and face after working with substance should be washed carefully. The whole of the glass instruments were immersed and decontaminate in a NaClO (aq) for 24 h, washed with liquid detergent and distilled water, and dried at oven at 50 °C for next experiment.

Fig 1S. Schematic present of preparation of DC/CFSO NPs in detail.

Fig 2S. DLS diagram of prepared Mt-CS/CFS NS.

Fig 3S. ζ-potential of prepared Mt-CS/CFS NS.

Fig.4S. FTIR spectra of (A) fresh DC/CFOS NC and (B) acid-treated DC/CFOS NC.

Fig.5S. GC analysis of edible oil before and after adsorption.

Table 1S. A number of major characteristics of a flatoxin $\mathrm{B}_1.$

Parameter	Comments			
Molecular formula	• $C_{17}H_{12}O_6$			
Molar mass	• 312.06 g.mol ⁻¹			
IUPAC name	• 4-methoxy-2,3,6a,9a-tetrahydrocyclopenta[c]furo[3',2':4,5]furo[2,3-h]chromene-1,11-dione			
Melting point	• 653.59 K			
Boiling point	• 877.83 K			
Wavelength (λ_{max})	• 364 nm			
CAS number	• 1162-65-8			
Physical state	• Solid / Powder			
Color	• White			
Classification	Carcinogenic mycotoxins			
Produced by	 Aspergillus flavus and Aspergillus parasiticus 			
	• Oral, rat; LD ₅₀ : 6.0 mg.kg ⁻¹			
Acute toxicity	• Oral, mouse; LD_{50} : 9.0 mg.kg ⁻¹			
	• Oral, monkey; LD ₅₀ : 2.2 mg.kg ⁻¹			
	• Carcinogenicity			
	• Damage to the epithelium			
	• Inflammation			
Adverse effects	 Reduction of nutrient absorption (malnutrition) 			
Adverse effects	Reduction of bone/tissue growth			
	• Hepatotoxicity			
	 Reproductive toxicity/ Teratogenicity 			
	Germ cell mutagenicity			

 Table 2S. ANOVA for RSM quadratic model.

Analysis of variance table						
	Sum of		Mean	F	p-value	
Source	Squares	df	Square	Value	Prob > F	
Model	5059.25	14	361.37	10.54	< 0.0001	significant
A-Temperatu	4.92	1	4.92	0.14	0.7106	
B-Time	792.80	1	792.80	23.12	0.0003	
C-[AFB1]	940.43	1	940.43	27.43	0.0001	
D-[DC/CFOS	1960.74	1	1960.74	57.19	< 0.0001	
AB	16.81	1	16.81	0.49	0.4953	
AC	118.81	1	118.81	3.47	0.0838	
AD	7.02	1	7.02	0.20	0.6578	
BC	1.10	1	1.10	0.032	0.8603	
BD	254.40	1	254.40	7.42	0.0165	
CD	118.81	1	118.81	3.47	0.0838	
A ²	253.24	1	253.24	7.39	0.0167	
B ²	9.91	1	9.91	0.29	0.5993	
C ²	16.12	1	16.12	0.47	0.5041	
D2	709.81	1	709.81	20.70	0.0005	
Residual	480.01	14	34.29			
Lack of Fit	478.48	10	47.85	125.26	0.0002	
Pure Error	1.53	4	0.38			
Cor Total	5539.26	28				

ANOVA for Response Surface Quadratic Model

Absorbent system	Sample	Q _{max} (mg.g ⁻¹)	Removal (%)	Comments	[Ref]
Cu-BTC MOF-derived porous carbonaceous materials [30.0 mg]	Vegetable oil	16.67	90.0	 T: 25.0 °C <i>t</i>: 30 min [AFB₁]: 5.0 μg.mL⁻¹ 	[1]
1.5NZMT ¹ [3.0 mg]	Water	4.87	~80.0	 pH: 3.5 T: 37.0 °C <i>t</i>: 120 min [AFB₁]: 3.300 mg.L⁻¹ 	[2]
0.5OP-10Mt ² [0.01 g]	Water	2.78	58.73	 pH: 3.5 T: 37.0 °C [AFB₁]: 4.0 mg.L⁻¹ 	[3]
1.00P-10Mt [0.01 g]	Water	2.69	49.73	 pH: 3.5 T: 37.0 °C [AFB₁]: 4.0 mg.L⁻¹ 	[3]
2.00P-10Mt [0.01 g]	Water	2.72	53.74	 pH: 3.5 T: 37.0 °C [AFB₁]: 4.0 mg.L⁻¹ 	[3]
PDA/PEI-coated membranes ³	Apple juice	-	71.10	 pH: 5.2 [AFB₁]: 100 μg.kg⁻¹ 	[4]
0.45SDB ⁴ -6-K-9@Fe ₃ O ₄ [50.0 mg]	Peanut oil	0.1354	~70.0	• T: 65.0 °C • <i>t</i> : 120 min • [AFB ₁]: 200 ng.mL ⁻¹	[5]
MMS ⁵ [0.1 g]	Water	1118.69 μg.g ⁻¹	94.59	 pH: 11.0 T: 20.0 °C t: 120 min [AFB₁]: 0.2 μg.mL⁻¹ 	[6]
FNHMS ⁶ -0.4 [10.0 mg]	Water	27.34	~100	 pH: 7.0 T: 37.0 °C t: 240 min [AFB₁]: 4.0 mg.L⁻¹ 	[7]
MCSC ⁷ -10 [0.2 mg.mL ⁻¹]	Water	24.99	>95.0	 pH: 7.0 T: 25.0 °C t: 240 min [AFB₁]: 20.0 mg.L⁻¹ 	[8]
Activated carbon [0.5 mg.mL ⁻¹]	Water	20.00	>99.0	 pH: 7.0 T: 37.0 °C t: 60 min [AFB₁]: 20.0 mg.mL⁻¹ 	[9]
Banana peel [6.0 mg.mL ⁻¹]	Water	8.40	94.9±0.4	 pH: 7.0-8.0 T: 22.0 °C <i>t</i>: 18 min [AFB₁]: 20.0 μg.mL⁻¹ 	[10]
Durian peel [5.0 mg.mL ⁻¹]	Water	13.02	98.40	 pH: 7.0 T: 37.0 °C <i>t</i>: 90 min [AFB₁]: 1.0 μg.mL⁻¹ 	[11]

Table.38. Screening data of various adsorbent.

Magnetic graphene oxide [10.0 mg]	Vegetable oil	1.68	86.30	 T: 37.0 °C <i>t</i>: 40 min [AFB₁]: 16.1 μg.L⁻¹ 	[12]
Magnetic attapulgite [3.0 mg]	Peanut oils	0.0529	86.80	 T: 50.0 °C <i>t</i>: 60 min [AFB₁]: 33.8 μg.kg⁻¹ 	[13]
PDA-PS NFsM ⁸ [2.5 mg]	Edible oil	7.73-9.13 ng.mg ⁻¹	84.80-86.50	 T: 25.0 °C <i>t</i>: 60 min [AFB₁]: 50.0 μg.L⁻¹ 	[14]
PDA-PS NFsM [2.5 mg]	Liquor	7.73-9.13 ng.mg ⁻¹	88.10	 T: 25.0 °C t: 60 min [AFB₁]: 50.0 μg.L⁻¹ 	[14]
PDA-PS NFsM [2.5 mg]	Soy sauce	7.73-9.13 ng.mg ⁻¹	88.70	 T: 25.0 °C <i>t</i>: 60 min [AFB₁]: 50.0 μg.L⁻¹ 	[14]
PDA-PS NFsM [2.5 mg]	Rice vinegar	7.73-9.13 ng.mg ⁻¹	85.50	 T: 25.0 °C <i>t</i>: 60 min [AFB₁]: 50.0 μg.L⁻¹ 	[14]
Pal-Mt ⁹ [0.01 g]	Water	8.59	>80.0	• pH: 6.5 • T: 37.0 °C • [AFB ₁]: 100 mg.L ⁻¹	[15]
Fe ₃ O ₄ @Au-MIP ¹⁰	Non-alcoholic beer	8.975	94.47-97.31	• <i>t</i> : 60 min • [AFB ₁]: 1.0 mg.L ⁻¹	[16]
PCL-g-C ₃ N ₄ /CQDs ¹¹ [0.05 g]	Water	-	>96.88	 pH: 8.5 T: 45.0 °C t: 30 min [AFB₁]: 0.5 μg.mL⁻¹ 	[17]
MRHB ¹²	Peanut oil	951.1 μg.g ⁻¹	>95.0	 T: 45.0 °C <i>t</i>: 60 min [AFB₁]: 10.0 μg.mL⁻¹ 	[18]
MCM ¹³ -41 [1.0 mg.mL ⁻¹]	Edible oils	215.93 ng.mg ⁻¹	80.35	• T: 25.0 °C • <i>t</i> : 120 min • [AFB ₁]: 250 ng.mL ⁻¹	[19]
NMMS ¹⁴ [11.0 mg]	AFB ₁ solution	169.88 µg.g ⁻¹	93.43	 pH: 7.0 T: 20.0 °C t: 120 min [AFB₁]: 0.2 μg.mL⁻¹ 	[20]
SFHA ¹⁵ [10.0 mg]	Water	-	99.70	 pH: 2.0-11.0 T: 40.0 °C [AFB₁]: 100 μg.kg⁻¹ 	[21]
Cu-MONT [10.0 mg.mL-1]	Water	66.225	>93.0	• pH: 3.0 • [AFB ₁]: 1.60 mg.L ⁻¹	[22]
FM@GO@Fe ₃ O ₄ ¹⁶ [15.0 mg]	Vegetable oil	0.3533 μg.mg ⁻¹	>70.0	 T: 50.0 °C <i>t</i>: 600 min [AFB₁]: 50.0 μg.kg⁻¹ 	[23]
GT-Fe-NPs ¹⁷ [1.0 mg.mL ⁻¹]	Water	131-139 ng.mg ⁻¹	85.0-90.0	 pH: 7.0 T: 37.0 °C <i>t</i>: 45 min [AFB₁]: 100 ng.mL⁻¹ 	[24]

(8:1) Al-Fe PILC ¹⁸ [40.0 mg]	Water	0.67	-	 pH: 2.0 T: 37.0 °C t: 60 min [AFB₁]: 4.0 μg.mL⁻¹ 	[25]
DC/CFOS [2,5 mg/L]	Water	3.449	97.40	 pH: T: 25°C <i>t</i>: 100 min [AFB₁]: 50.0 μg.mL⁻¹ 	This work
DC/CFOS [2,5 mg/L]	Edible oil	3.127	92.60	 pH: 2.0 T: 25 °C <i>t</i>: 110 min [AFB₁]: 2.50 μg.mL⁻¹ 	This work
DC/CFOS [2,5 mg/L]	Corn oil	3.106	91.70	 pH: 2.0 T: 25 °C <i>t</i>: 110 min [AFB₁]: 2.50 μg.mL⁻¹ 	This work

¹ Organo-montmorillonites modified by binary surfactant mixtures.

² Octylphenol polyoxyethylene ether.

³ Polydopamine and polyethyleneimine.

⁴ Magnetic soybeans dreg-based biochar.

⁵ Magnetic mesoporous silica.

⁶ Functionalized nanoflower-like hydroxyl magnesium silicate.

⁷ Copper silicate composites with novel duster-like hollow mesoporous structure.

⁸ Polydopamine modified nanofibers membrane.

⁹ Polygorskite-montmorillonite.

¹⁰ Molecular imprinted polymer coupled with Fe₃O₄-Au nanocomposite.

¹¹ Polycaprolactone membranes anchored to g-C₃N₄.

¹² Magnetic rice husk-based biochar.

¹³ Rice husk-based mesoporous silica.

- ¹⁴ Amino-grafted magnetic mesoporous silica.
- ¹⁵ Sodium-free humic acid.
- ¹⁶ A hierarchical fungal mycelia@graphene oxide@Fe₃O₄.
- ¹⁷ Fe nanoparticles using green tea.

¹⁸ Aluminum-iron-pillared montmorillonite.

References

1 F. Ma, X. Cai, J. Mao, L. Yu and P. Li, J. Hazard. Mater., 2021, 412, 125170.

2 Z. Sun, C. Lian, C. Li and S. Zheng, J. colloid interface sci., 2020, 565, 11-22.

3 G. Wang, C. Lian, Y. Xi, Z. Sun and S. Zheng, J. colloid interface sci., 2018, 518, 48-56.

4 S. Li, J. Luo, J. Fan, X. Chen and Y. Wan, Sep. Purif. Technol., 2018, 199, 311-319.

5 Z. Ying, T. Zhang, H. Li and X. Liu, Food Chem., 2023, 409, 135321.

6 Y. Li, R. Wang, Z. Chen, X. Zhao, X. Luo, L. Wang, Y. Li, and F. Teng, *PLoS One*, 2020, 15, e0238837.

7 Z. Sun, D. Huang, X. Duan, W. Hong and J. Liang, J. Hazard. Mater., 2020, 387, 121792.

8 Y. Li, K. Nie, Q. Tang, G. Tian and J. Liang, Microporous Mesoporous Mater., 2022, 346, 112317.

9 J. M. Fernandes, T. Calado, A. Guimarães, M. A. M. Rodrigues and L. Abrunhosa, *Mycotoxin Res.*, 2019, **35**, 243-252.

10 Z. H. Shar, M. T. Fletcher, G. A. Sumbal, S. T. H. Sherazi, C. Giles, M. I. Bhanger, S. M. Nizamani, *Food Addit. Contam. Part A*, 2016, **33**, 849-860.

11 S. Adunphatcharaphon, A. Petchkongkaew, D. Greco, V. D'Ascanio, W. Visessanguan and G. Avantaggiato, *Toxins*, 2020, **12**, 108.

12 J. Ji and W. Xie, J. Hazard. Mater., 2020, 381, 120915.

13 J. Ji and W. Xie, Food Chem., 2021, 339, 128072.

14 H. Dai, S. Liang, D. Shan, Q, Zhang, J. Li, Q. Xu and C. Wang, Food Chem., 2022, 380, 132176.

15 Y. Zhao, X. Han, N. Zhang, J. Meng, H. Zhang and J. Liang, Langmuir, 2023, 39, 2797-2807.

16 M. Pezeshkpur, F. Tadayon and M. R. Sohrabi, Chem. Select, 2023, 8, e202300112.

17 L. Yao, C. Sun, H. Lin, G. Li, Z. Lian, R. Song, S. Zhuang and D. Zhang, *Biomolecules*, 2023, 13, 550.

18 P. Li, S. Wang, B. Lv, M. Zhang, C. Xing, X. Sun and Y. Fang, Food Control, 2023, 152, 109883.

19 Y. N. Li, R. Wang, X. Luo, Z. Chen, L. Wang, Y. Zhou, W. Liu, M. Cheng and C. Zhang, *Toxins*, 2022, 14, 87.

20 Y. Zhou, R. Wang, Z. Chen, X. Luo, L. Wang, X. Zhao, C. Zhang and P. Yu, *Food Chem.*, 2022, **389**, 132987.

21 J. A. Maguey-González, M. D. J. Nava-Ramírez, S. Gómez-Rosales, M. D. L. Ángeles, B. Solís-Cruz, D. Hernández-Patlán, R. Merino-Guzmán, X. Hernández-Velasco, J. D. D. Figueroa-Cárdenas, A. Vázquez-Durán and B. M. Hargis, *Toxins*, 2023, **15**, 83.

22 A. Daković, S. Matijašević, G. E. Rottinghaus, D. R. Ledoux, P. Butkeraitis and Z. Sekulić, *Colloids Surf. B*, 2008, **66**, 20-25.

23 F. Ma, Q. Guo, Z. Zhang, X. Ding, L. Zhang, P. Li and L. Yu, Food Chem., 2023, 428, 136779.

24 M. A. Asghar, E. Zahir, S. M. Shahid, M. N. Khan, M. A. Asghar, J. Iqbal and G. Walker, Lwt, 2018, 90, 98-107.

25 L. Zeng, S. Wang, X. Peng, J. Geng, C. Chen and M. Li, Appl. Clay Sci., 2013, 83, 231-237.