Supporting Information

Homoleptic and heteroleptic ketodiiminate zinc complexes for the ROP of cyclic *L*-Lactide

Eduard Glöckler, Leon Kapp, Christoph Wölper, Marcel Schumacher, André H. Gröschel, Stephan Schulz*

Content

I. Spectroscopic Characterization

Figures S1-S3. ¹H, ¹³C NMR, and IR spectra of L¹H₂.
Figures S4-S6. ¹H, ¹³C NMR and IR spectra of L²H₂.
Figure S7. ¹H NMR spectrum of the reaction of L¹H₂ with 2 eq. of ZnCp*₂.
Figure S8. ¹H NMR spectrum of the reaction of L¹H₂ with 2 eq. of ZnCp₂.
Figure S9-S10. ¹³C NMR and IR spectra of 1.
Figures S11-S13. ¹H, ¹³C NMR and IR spectra of 2.
Figures S14-S16. ¹H, ¹³C NMR and IR spectra of 3.

II. Crystallographic Details

Table S1 Crystal data for compound 2 and 3

III. Polymerization Studies

Figure S17. MWDs of cPLA obtained by reaction of *L*-LA and 2 and 3.

Figure S18. MWDs of cPLA obtained by reaction of *L*-LA and 2 (200:1+200+200).

Figure S19. ¹H NMR (300 MHz, C₆D₆, 300 K) spectrum of cPLA obtained by reaction of *L*-LA and **2** in ratio [monomer]:[Zn] = 200:1 at 100 °C in toluene.

Figure S20. MALDI-ToF spectrum of cyclic-PLLA obtained by reaction of *L*-LA and **2** in ratio [monomer]:[Zn] = 50:1 at 100 °C in toluene.

Figure S21. IR spectrum of cyclic-PLLA obtained by reaction of *L*-LA and **2** in ratio [monomer]:[Zn] = 50:1 at 100 °C in toluene.

Figure S22. MALDI-ToF spectrum of linear PLLA obtained by reaction of *L*-LA and **3** in ratio [monomer]:[Zn] = 50:1 at 100 °C in toluene.

Figure S23. IR spectrum of linear PLLA obtained by reaction of *L*-LA and **3** in ratio [monomer]:[Zn] = 50:1 at 100 °C in toluene.

I. Spectroscopic Characterization

Figure S2. ¹³C NMR (75 MHz, CD₂Cl₂, 25 °C) spectrum of L¹H₂.

Figure S3. IR spectrum of L^1H_2 .

Figure S4. 1H NMR (300 MHz, CD_2Cl_2, 25 °C) spectrum of L^2H_2.

Figure S5. ^{13}C NMR (75 MHz, CD_2Cl_2, 25 °C) spectrum of $L^2H_2.$

Figure S6. IR spectrum of L¹H₂.

Figure S7. ¹H NMR (300 MHz, CD₂Cl₂, 25 °C) spectrum of the reaction of $L^{1}H_{2}$ with 2 eq. of ZnCp^{*}₂ yielding compound **1** and Cp^{*}H.

Figure S8. ¹H NMR (300 MHz, CD₂Cl₂, 25 °C) spectrum of the reaction of L¹H₂ with 2 eq. of ZnCp₂ yielding compound 1 and Cp*H.

Figure S9. ¹³C NMR (75 MHz, CD₂Cl₂, 25 °C) spectrum of 1.

Figure S10. IR spectra of 1.

Figure S11. ¹H NMR (300 MHz, toluene-*d*₈, 25 °C) spectrum of **2**.

Figure S12. ¹³C NMR (75 MHz, toluene-*d*₈, 25 °C) spectrum of 2.

Figure S13. IR spectrum of 2.

Figure S14. 1H NMR (300 MHz, C₆D₆, 25 °C) spectrum of 3.

Figure S15. ^{13}C NMR (75 MHz, $C_6D_6,$ 25 $^\circ C) spectrum of 3.$

Figure S16. IR spectrum of 3.

II. Crystallographic Details

Table S1	Crvstal	data for	compo	unds 2	and 3
	0. 30.00	aata tot	0011100		

Compound	2	3	
Empirical formula	$C_{27}H_{42}N_4OZn_2$	C ₂₇ H ₄₈ N ₄ OZn	
Formula weight (Da)	569.38	510.06	
Т (К)	100(2)	100(2)	
Wavelength (Å)	0.71073	1.54178	
Crystal system	triclinic	triclinic	
Space group	<i>P-</i> 1	<i>P</i> -1	
a /Å	7.9884(6)	8.0513(4)	
b/Å	8.0941(7)	12.3749(6)	
c /Å	22.3164(18)	14.7581(7)	
α (°)	98.388(4)	81.3299(17)	
β (°)	95.725(4)	81.6550(17)	
γ (°)	106.622(4)	74.9858(17)	
V (Å ³)	1352.54(19)	1395.29(12)	
Z, Calc. density (g cm ⁻³)	2, 1.398	2, 1.214	
Abs. coefficient (mm ⁻¹)	1.799	1.397	
Crystal size (mm)	0.255 × 0.119 × 0.05	0.263 × 0.087 × 0.075	
Theta range for data collection (°)	2.664°-33.268°	3.048°-79.538°	
Reflections collected	92625	71276	
Independent reflections	10387	5871	
Data/restraints/parameters	10387/0/313	5871/52/362	
Goodness-of-fit on <i>F</i> ²	1.040	1.062	
Final R indices $[l > 2\sigma(l)]$	<i>R</i> 1 = 0.029	R1 = 0.038	
	<i>wR</i> 2 = 0.064	wR2 = 0.099	
R indices (all data)	R1 = 0.0406 R1 = 0.042		
	wR2 = 0.0679	wR2 = 0.1040	

III. Polymerization Studies

Figure S17. MWDs of cPLA obtained by reaction of *L*-LA and 2 and 3.

Figure S18. MWDs of cPLA obtained by reaction of *L*-LA and complex 2 (200:1+200+200).

Figure S19. ¹H NMR (300 MHz, C₆D₆, 25 °C) spectrum of cPLA obtained by reaction of *L*-LA and **2** in ratio [monomer]:[Zn] = 200:1 at 100 °C in toluene.

Figure S20. MALDI-ToF spectrum of cyclic-PLLA obtained by reaction of *L*-LA and **2** in ratio [monomer]:[Zn] = 50:1 at 100 °C in toluene.

Figure S21. IR spectrum of cyclic-PLLA obtained by reaction of *L*-LA and **2** in ratio [monomer]:[Zn] = 50:1 at 100 °C in toluene.

Figure S22. MALDI-ToF spectrum of linear PLLA obtained by reaction of *L*-LA and **3** in ratio [monomer]:[Zn] = 50:1 at 100 °C in toluene.

Figure S23. IR spectrum of linear PLLA obtained by reaction of *L*-LA and **3** in ratio [monomer]:[Zn] = 50:1 at 100 °C in toluene.