Supporting Information

Homoleptic and heteroleptic ketodiiminate zinc complexes for the ROP of cyclic L-Lactide

Eduard Glöckler, Leon Kapp, Christoph Wölper, Marcel Schumacher, André H.
Gröschel, Stephan Schulz*

Content

I. Spectroscopic Characterization

Figures S1-S3. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and IR spectra of $\mathrm{L}^{1} \mathrm{H}_{2}$.
Figures S4-S6. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and IR spectra of $\mathrm{L}^{2} \mathrm{H}_{2}$.
Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction of $\mathrm{L}^{1} \mathrm{H}_{2}$ with 2 eq . of $\mathrm{ZnCp}^{*}{ }_{2}$.
Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction of $\mathrm{L}^{1} \mathrm{H}_{2}$ with 2 eq. of ZnCp 2 .
Figure S9-S10. ${ }^{13} \mathrm{C}$ NMR and IR spectra of 1 .
Figures S11-S13. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and IR spectra of 2.
Figures S14-S16. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and IR spectra of 3 .

II. Crystallographic Details

Table S1 Crystal data for compound $\mathbf{2}$ and $\mathbf{3}$

III. Polymerization Studies

Figure S17. MWDs of cPLA obtained by reaction of L-LA and 2 and 3.
Figure S18. MWDs of cPLA obtained by reaction of $L-L A$ and 2 (200:1+200+200).
Figure S19. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right)$ spectrum of cPLA obtained by reaction of L-LA and $\mathbf{2}$ in ratio [monomer]:[Zn] $=200: 1$ at $100^{\circ} \mathrm{C}$ in toluene.
Figure S20. MALDI-ToF spectrum of cyclic-PLLA obtained by reaction of L-LA and $\mathbf{2}$ in ratio [monomer]:[Zn] = 50:1 at $100^{\circ} \mathrm{C}$ in toluene.
Figure S21. IR spectrum of cyclic-PLLA obtained by reaction of L-LA and $\mathbf{2}$ in ratio [monomer]:[Zn] = $50: 1$ at $100^{\circ} \mathrm{C}$ in toluene.
Figure S22. MALDI-ToF spectrum of linear PLLA obtained by reaction of L-LA and $\mathbf{3}$ in ratio [monomer]: Zn] $=50: 1$ at $100^{\circ} \mathrm{C}$ in toluene.
Figure S23. IR spectrum of linear PLLA obtained by reaction of L-LA and $\mathbf{3}$ in ratio [monomer]:[Zn] = $50: 1$ at $100^{\circ} \mathrm{C}$ in toluene.

I. Spectroscopic Characterization

Figure S1. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right)$ spectrum of $\mathrm{L}^{1} \mathrm{H}_{2}$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right)$ spectrum of $\mathrm{L}^{1} \mathrm{H}_{2}$.

Figure S3. IR spectrum of $\mathrm{L}^{1} \mathrm{H}_{2}$.
 C
Γ

Figure S4. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right)$ spectrum of $\mathrm{L}^{2} \mathrm{H}_{2}$.

Figure $\mathbf{S 5} .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right)$ spectrum of $\mathrm{L}^{2} \mathrm{H}_{2}$.

Figure $\mathbf{S 6}$. IR spectrum of $\mathrm{L}^{1} \mathrm{H}_{2}$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$) spectrum of the reaction of $\mathrm{L}^{1} \mathrm{H}_{2}$ with 2 eq. of $\mathrm{ZnCp}{ }^{*} 2$ yielding compound 1 and $\mathrm{Cp}^{*} \mathrm{H}$.

Figure S8. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$) spectrum of the reaction of $\mathrm{L}^{1} \mathrm{H}_{2}$ with 2 eq. of ZnCp 2 yielding compound 1 and $\mathrm{Cp}^{*} \mathrm{H}$.

Figure S9. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right)$ spectrum of $\mathbf{1 .}$

Figure $\mathbf{S 1 0 .}$ IR spectra of 1.

Figure S11. ${ }^{1} \mathrm{H}$ NMR (300 MHz , toluene- $d_{8}, 25^{\circ} \mathrm{C}$) spectrum of 2.

Figure S12. ${ }^{13} \mathrm{C}$ NMR (75 MHz, toluene- $\left.d_{8}, 25^{\circ} \mathrm{C}\right)$ spectrum of 2.

Figure $\mathbf{S} 13 . \operatorname{IR}$ spectrum of 2.

Figure $\mathbf{S 1 4 .}{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$ spectrum of 3.

Figure S15. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$ spectrum of 3.

Figure S16. IR spectrum of 3.

II. Crystallographic Details

Table S1 Crystal data for compounds 2 and 3

Compound	2	3
Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{OZn} \mathrm{n}_{2}$	$\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{OZn}$
Formula weight (Da)	569.38	510.06
T (K)	100(2)	100(2)
Wavelength (\AA)	0.71073	1.54178
Crystal system	triclinic	triclinic
Space group	$P-1$	P-1
a $/ \AA$ A	7.9884(6)	8.0513(4)
b / A	8.0941(7)	12.3749(6)
c /Å	22.3164(18)	14.7581(7)
$\alpha\left({ }^{\circ}\right)$	98.388(4)	81.3299(17)
$\beta\left({ }^{\circ}\right)$	95.725(4)	81.6550(17)
$\gamma\left({ }^{\circ}\right)$	106.622(4)	74.9858(17)
$\mathrm{V}\left(\AA^{3}\right)$	1352.54(19)	1395.29(12)
Z, Calc. density ($\mathrm{g} \mathrm{cm}^{-3}$)	2, 1.398	2, 1.214
Abs. coefficient (mm^{-1})	1.799	1.397
Crystal size (mm)	$0.255 \times 0.119 \times 0.05$	$\begin{gathered} 0.263 \times 0.087 \times \\ 0.075 \end{gathered}$
Theta range for data collection (${ }^{\circ}$)	$2.664^{\circ}-33.268^{\circ}$	$3.048^{\circ}-79.538^{\circ}$
Reflections collected	92625	71276
Independent reflections	10387	5871
Data/restraints/parameters	10387/0/313	5871/52/362
Goodness-of-fit on F^{2}	1.040	1.062
Final R indices [$/>2 \sigma(I)$]	$R 1=0.029$	$R 1=0.038$
	$w R 2=0.064$	$w R 2=0.099$
R indices (all data)	$R 1=0.0406$	$R 1=0.0421$
	$w R 2=0.0679$	$w R 2=0.1040$

III. Polymerization Studies

Figure S17. MWDs of cPLA obtained by reaction of L-LA and $\mathbf{2}$ and $\mathbf{3}$.

Figure S18. MWDs of cPLA obtained by reaction of L-LA and complex 2 (200:1+200+200).

Figure S19. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$) spectrum of cPLA obtained by reaction of $L-L A$ and 2 in ratio [monomer]: $[\mathrm{Zn}]=200: 1$ at $100^{\circ} \mathrm{C}$ in toluene.

Figure S20. MALDI-ToF spectrum of cyclic-PLLA obtained by reaction of $L-\mathrm{LA}$ and $\mathbf{2}$ in ratio [monomer]:[Zn] = 50:1 at $100^{\circ} \mathrm{C}$ in toluene.

Figure S21. IR spectrum of cyclic-PLLA obtained by reaction of L-LA and $\mathbf{2}$ in ratio [monomer]:[Zn] = 50:1 at 100 ${ }^{\circ} \mathrm{C}$ in toluene.

Figure S22. MALDI-ToF spectrum of linear PLLA obtained by reaction of L-LA and $\mathbf{3}$ in ratio [monomer]:[Zn] = $50: 1$ at $100^{\circ} \mathrm{C}$ in toluene.

Figure S23. IR spectrum of linear PLLA obtained by reaction of L-LA and $\mathbf{3}$ in ratio [monomer]:[Zn] = 50:1 at 100 ${ }^{\circ} \mathrm{C}$ in toluene.

