Supporting Information for "A Combined First Principles and Experimental Approach to Bi_2WO_6 "

Quazi Shafayat Hossain,¹ Sadiq Shahriyar Nishat,² Mohsina Sultana,¹ Tasnim Åhmed Mahi,^{1,3} Shahran Ahmed,^{1,4} M. N. I. Khan,⁵ H. N. Das,⁵ Muhammad Shahriar Bashar,⁶ Umme Sarmeen Akhtar,⁷ Sharmin Jahan,⁸ Fariha Chowdhury,⁹ Khandker Saadat Hossain,¹⁰ Sazzad M.S. Imran,¹ and Imtiaz Ahmed^{1,*}

> ¹Materials Science Research Laboratory, Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka-1000, Bangladesh

²Department of Materials Science and Engineering,

Rensselaer Polytechnic Institute, Troy, NY, USĂ

³Semiconductor Technology Research Centre,

University of Dhaka, Dhaka-1000, Bangladesh

⁴Institute of Mining, Mineralogy and Metallurgy, Bangladesh Council of Scientific and Industrial Research, Joypurhat-5900, Bangladesh

⁵Materials Science Division, Atomic Energy Centre, Dhaka-1000, Bangladesh

⁶Institute of Energy Research and Development,

Bangladesh Council of Scientific and Industrial Research, Dhaka-1205, Bangladesh ⁷Institute of Glass and Ceramic Research and Testing,

Bangladesh Council of Scientific and Industrial Research, Dhaka-1205, Bangladesh ⁸Institute of Energy Science and Technology,

Bangladesh Council of Scientific and Industrial Research, Dhaka-1205, Bangladesh ⁹Biomedical and Toxicological Research Institute,

Bangladesh Council of Scientific and Industrial Research, Dhaka-1205, Bangladesh

¹⁰Nanophysics and Soft Matter Laboratory, Department of Physics, University of Dhaka, Dhaka-1000, Bangladesh

I. XRD ANALYSIS

^{*} imtiaz@du.ac.bd

Crystallographic Parameters, Bond Lengths and Bond Angles	$ \begin{array}{c c} \text{stample/DFT} & \text{Sym. } \hat{a}(\mathring{A}) \ b (\mathring{A}) \ c (\mathring{A}) \alpha(^{\circ}) \beta(^{\circ}) \gamma(^{\circ}) \text{V} (\mathring{A}^{3}) d_{\text{W-O}}(\mathring{A}) d_{\text{Bi-O}}(\mathring{A}) \chi^{2} \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HBWO-U $Pca2_15.449 \ 16.348 \ 5.450 \ 90 \ 90 \ 90 \ 485.4871.799', 1.856', 1.853 \ 2.180', 2.241', 2.300 \ 1.45$	HBWO-S $Pca2_15.452 \ 16.340 \ 5.440 \ 90 \ 90 \ 90 \ 484.601 \ 797, \ 1.805, \ 1.852 \ 2.179, \ 2.240, \ 2.240, \ 2.298 \ 1.27 \ 1.854 \ 2.133 \ 2.146 \ 2.434 \ 2.498 \ 2.502 \ 1.27$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$+U_{ m d}~(2~{ m eV})+U_{ m p}~(2~{ m eV})~Pca2_{ m 1}5.515~16.979~5.558~90~90~90~520.3931.895,~1.901,~1.902~1.831,~1.846,~1.893$	$+U_{ m d}~(5~{ m eV})+U_{ m p}~(5~{ m eV})~Pca2_15.468~17.111~5.514~90~90~90~515.9311.895,~1.901,~1.902~1.864,~1.887,~1.900~1.900~1.903,~2.021,~2.027~1.926,~1.987,~2.085$	$+U_{ m d}~(7~{ m eV})+U_{ m p}~(7~{ m eV})~Pca2_15.438117.2065.488~90~90~513.4161.895,~1.901,~1.902~1.897,~1.899,~1.904$	$+U_{ m d}~(9~{ m eV})+U_{ m p}~(9~{ m eV})~Pca2_15.422~17.263~5.477~90-90-90~512.6341.895, 1.901, 1.902~1.907, 1.918, 1.924$	$U_{ m d}~(12~{ m eV}) + U_{ m p}~(12~{ m eV}) P ca 2_1 5.408~17.340~5.478~90~90~90~513.7161.895, 1.901, 1.902~1.910, 1.923, 1.941~1.974~1.903, 2.021, 2.027~1.952, 1.964, 1.974~1.$	$U_{\rm d}~(14~{\rm eV}) + U_{ m p}~(14~{\rm eV})Pca2_15.401~17.404~5.482~90~90~90~515.2841.895,~1.901,~1.902~1.912,~1.922,~1.946$
	Sample/DFT	SBWO	HBWO-U	HBWO-S	GGA-PBE	$GA-PBE+U_d (2 eV)+$	$GA-PBE+U_d$ (5 eV)+	$GA-PBE+U_d (7 eV)+$	$GA-PBE+U_d (9 eV)+$	$A-PBE+U_{d} (12 eV)+$	$A-PBE+U_{d}$ (14 eV)+

TABLE S1. Crystallographic parameters of SBWO, HBWO-U, and HBEO-S samples along with that of GGA-PBE and GGA-PBE+ $U_{\rm d}+U_{\rm p}$ for different values of $U_{\rm d}$ and $U_{\rm p}.$

Crystallo,	graphic Farameters, bond Len	lgtn;	s and	bond F	Angles						
Sample/DFT	Sym. $a(\mathring{A}) \ b(\mathring{A}) \ c(\mathring{A}) \alpha(^{\circ})\beta($	$\mathcal{L}(\circ)$	$\Lambda(\circ)$	$(Å^3)$	-Wh	0 (Å		$d_{\rm Bi-0}$	0 (Å)		5
SBWO	$Pca2_15.43316.4155.45490^{-9}$		$)0^{48}$	6.4421.7	797, 1.	1303, 137, 137, 137, 137, 137, 137, 137, 13	1.8592.1	$[82, 2]{141}$	242, 542, 542, 542, 542, 542, 542, 542,	2.3021.7	22
HBWO-U	$Pca2_{1}5.44916.3485.450909$	00	90 48	5.4871.7	799. 1	806.	1.8532.1	[80, 2]	$^{430}_{241.5}$	2.3001.4	15
	· · · · · · · · · · · · · · · · · · ·			- T	355, 2	135.	2.1472.4	138, 2.	500.	2.502	
HBWO-S	$Pca2_{1}5.45216.3405.440909$	000	90 48	4.6011.7	797, 1.	805,	1.8522.1	179, 2.	240, 5	2.2981.5	24
	ı			1.	854, 2	(133)	2.1462.4	134, 2.	498, 5	2.502	
GGA-PBE+vdW	$Pca2_1 5.50816.6165.517 90 9$	0	90 5C	4.9211.8	819, 1	819,	1.8832.5	214, 2.	275, 5	2.340	
	4			$\frac{1}{2}$	83, 2	158,	2.1582.4	169, 2.	499, 5	2.517	
$GGA-PBE+U_d$ (2 eV)+U _n (2 eV)+vdW	$Pca2_{1}5.48316.6675.488909$	000	<u> 90 50</u>	1.4931.8	335, 1	835,	1.8882.5	209, 2.	275, 5	2.328	
	1			1.8	88, 2	114,	2.1142.4	185, 2.	492, 5	2.506	
$GGA-PBE+U_d$ (5 eV)+ U_p (5 eV)+vdW	$Pca2_{1}5.44016.8005.451909$	00	<u></u> 30 45	8.1051.8	369, 1	869,	1.8952.2	203, 2.	277, 5	2.304	
	1			1.8	395, 2	044,	2.0442.4	175, 2.	494, 5	2.508	
$GGA-PBE+U_d$ (7 eV)+ U_p (7 eV)+vdW	$Pca2_15.41616.8685.432909$	00	<u></u> 90 45	6.2161.8	398, 1	898,	1.9002.1	199, 2.	283, 5	2.287	
	1			1.0	900, 1	996,	1.9962.4	157, 2.	484, 5	2.536	
$GGA-PBE+U_d$ (9 eV)+ U_p (9 eV)+vdW	$Pca2_{1}5.40416.9135.425909$	00	<u></u> 30 45	5.7781.9	900, 1	900	1.9192.1	192, 2.	274, 5	2.287	
	1			1:0	919, 1	971,	1.9712.4	144, 2.	486, 5	2.551	
$GGA-PBE+U_d$ (12 eV)+ U_n (12 eV)+vdW	$^{7}Pca2_{1}5.39316.9635.425909$	00	<u>)</u> 0 45	6.2591.9	902, 1.	902,	1.9322.1	180, 2.	261, 5	2.285	
	1			1.0	32, 1	958,	1.9582.4	131, 2.	503, 5	2.548	
$GGA-PBE+U_d$ (14 eV)+U _n (14 eV)+vdW	$^{7}Pca2_{1}5.38717.0075.425909$	00	<u>)</u> 0 45	7.0511.8	395, 1.	904,	1.9352.1	169, 2.	254, 5	2.282	
· · · · · · · · · · · · · · · · · · ·	4			1.6	35, 1	956,	1.9562.4	124, 2.	523, 5	2.535	
TABLE S2. Crystalloeraphic parameters of	SBWO. HBWO-U. and HBEO.		ample	s along	with t	hat o	f GGA-F	DBE+1	Mp2	and GG	-

TABLE 52. Crystallographic parameters of ΣBWU , $\Pi BWUUU$, and $\Pi BEUUD$ samples along with that of $U_{\rm GA}$, $PBE+U_{\rm d}+U_{\rm p}+vdW$ for different values of $U_{\rm d}$ and $U_{\rm p}$. The van der Waals (vdW) interaction was included with the DFT-D3 method including Becke-Johnson (BJ) damping.

II. RAMAN ANALYSIS

TABLE S3. RT experimental Raman peaks of SBWO, HBWO-U, and HBWO-S samples along with that of DFT (GGA-PBE and GGA-PBE+ U_d+U_p) simulations. ELM: External Lattice Mode, AD: Asymmetric Distortion, SBV: Symmetric Bending Vibrations, ABV: Asymmetric Bending Vibrations, TM: Translational Mode, ABrM: Asymmetric Bridging Mode, AST: Asymmetric Stretching.

SBWO	HBWO-U	HBWO-S	GGA-PBE	$GGA-PBE+U_d+U_p$		
$\overline{(\mathrm{cm}^{-1})}$	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	Symm.	Peak Assignment
-	129	139	129	128	$E_{\mathbf{g}}$	ELM
153	152	152	154	158	A_{1g}°	ELM
-	222	225	222	228	$B_{1g}^{-\circ}$	$WO_6 AD$
242	255	260	254	260	A_{1g}	Bi-O SBV
283	282	283	274	282	$E_{\mathbf{g}}^{\mathbf{o}}$	$WO_6 ABV$
295	300	306	296	298	$\tilde{E_g}$	Bi^{3+} and WO_{6}^{6-} TM
406	413	417	408	412	E_{g}°	$WO_6 ABV$
711	716	704	713	716	B_{1g}	WO_6 ABrM
-	-	724	731	732	$B_{1g}^{-\circ}$	O-W-O AST
800	796	796	794	804	B_{1g}^{-8}	$WO_6 ABrM$
-	814	821	811	834	B_{1g}^{-s}	O-W-O AST

III. FTIR ANALYSIS

TABLE S4. The SBWO, HBWO-U, and HBWO-S samples' FTIR peak designations to corresponding atomic motion along with DFT-derived peaks of phonon density of states for GGA-PBE+vdW and GGA-PBE+ U_d+U_p+vdW . SV: Symmetric Vibration, AST: Asymmetric Stretching, SST: Symmetric Stretching, BV: Bending Vibration.

			FTIR Peak	Analysis	
SBWO	HBWO-U	HBWO-S	GGA-PBE+vdW	$GGA-PBE+U_d+U_p+vdW$	
(cm^{-1})	$({\rm cm}^{-1})$	(cm^{-1})	(cm^{-1})	(cm^{-1})	Peak Assignment
417	427	427	419	424	Bi-O SST
533	565	565	526	540	Bi-O-Bi AST
680	703	697	684	678	W-O SST
818	812	820	782	814	Bi-O SST
958	-	-	915	930	O-H BV
1056	1026	1029	-	-	W-O SST
-	1108	-	-		C-C SST
-	1314	1392	_	-	C=O SST
-	1636	1627	_	-	O-H SST
	3471	3469	_	_	O-H BV

IV. EDX ANALYSIS

The EDX spectra in Fig. S1 presents the characteristic peaks of X-ray radiation for Bi $(L_{\alpha} = 10.79 \text{ keV}, L_{\beta} = 13.00 \text{ keV}, M_{\alpha} = 2.42 \text{ keV}, W (L_{\alpha} = 8.25 \text{ keV}, L_{\beta} = 9.75 \text{ keV}, \text{ and}$ $M_{\alpha} = 1.85 \text{ keV})$ in all samples.

TABLE S5. Chemical species identification, atomic percentage at. (%) and weight percentage wt. (%) concentration analysis using EDX (Model: EDAX Team) of SBWO, HBWO-U, and HBWO-S.

		EDX Ar	alysis		
		at. (%)	at. (%)	wt. (%)	wt. (%)
Sample	Element	(Theory)	(Exp.)	(Theory)	(Exp.)
SBWO	Bi	22.22	22.8	59.89	59
	W	11.11	10.79	26.35	27.31
	0	66.67	66.41	13.76	13.69
HBWO-U	Bi	22.22	22.39	59.89	59.89
	W	11.11	11.12	26.35	26.66
	0	66.67	66.49	13.76	13.45
HBWO-S	Bi	22.22	22.16	59.89	59.9
	W	11.11	11.37	26.35	26.38
	Ο	66.67	66.47	13.76	13.72

FIG. S1. EDX spectra of (a) SBWO, (b) SBWO-U, and (c) SBWO-S measured by EDX Model: EDAX Team machine.

V. ELECTRONIC PROPERTIES SIMULATION

FIG. S2. TDOS and PDOS of BWO for (a) GGA-PBE and (b) GGA-PBE+vdW functionals. The inclusion of vdW force reduces the band gap $E_{\rm g}$ in DOS.

FIG. S3. Electronic BS of BWO for (a) GGA-PBE and (b) GGA-PBE+vdW functionals. The inclusion of vdW force reduces the band gap $E_{\rm g}$ in BS. The GGA-PBE predicts the erroneous direct nature of the band gap regardless of the vdW force.

FIG. S4. TDOS and PDOS of BWO for GGA-PBE+ U_d+U_p with (a) $U_d = U_p = 2$ eV, (b) $U_d = U_p = 5$ eV, (c) $U_d = U_p = 7$ eV, (d) $U_d = U_p = 9$ eV, (e) $U_d = U_p = 12$ eV and (f) $U_d = U_p = 14$ eV. The band gap E_g varies with different values of U_d and U_p .

FIG. S5. The vdW force is included. TDOS and PDOS of BWO for GGA-PBE+ U_d+U_p+vdW with (a) $U_d = U_p = 2 \text{ eV}$, (b) $U_d = U_p = 5 \text{ eV}$, (c) $U_d = U_p = 7 \text{ eV}$, (d) $U_d = U_p = 9 \text{ eV}$, (e) $U_d = U_p = 12 \text{ eV}$ and (f) $U_d = U_p = 14 \text{ eV}$. The band gap E_g varies with different values of U_d and U_p .

,

FIG. S6. Electronic BS of BWO in the absence of vdW force for GGA-PBE+ U_d + U_p with (a) $U_d = U_p = 2 \text{ eV}$, (b) $U_d = U_p = 5 \text{ eV}$, (c) $U_d = U_p = 7 \text{ eV}$, (d) $U_d = U_p = 9 \text{ eV}$, (e) $U_d = U_p = 12 \text{ eV}$ and (f) $U_d = U_p = 14 \text{ eV}$. The band gap E_g in the BS varies with different values of U_d and U_p .

FIG. S7. The vdW force is included. Electronic BS of BWO for GGA-PBE+ U_d+U_p+vdW with (a) $U_d = U_p = 2 \text{ eV}$, (b) $U_d = U_p = 5 \text{ eV}$, (c) $U_d = U_p = 7 \text{ eV}$, (d) $U_d = U_p = 9 \text{ eV}$, (e) $U_d = U_p = 12 \text{ eV}$ and (f) $U_d = U_p = 14 \text{ eV}$. The band gap E_g in the BS varies with different values of U_d and U_p .

VI. ELASTIC PROPERTIES SIMULATION

TABLE S6. Elastic constants (C_{ij}), bulk moduli (B_V , B_R and B_H), shear moduli (G_V , G_R , G_H), Young's moduli (E_V , E_R , E_H), Poisson's ratio (ν_V , ν_R , ν_H) and Pugh's ratio (k_V , k_R , k_H) in Voigt–Reuss–Hill framework for for BWO using GGA-PBE, GGA-PBE+ U_d+U_p and GGA-PBE+ U_d+U_p+vdW .

	Elas	tic Properties (E.P.)	of BWO
E.P.	GGA-PBE	$GGA-PBE+U_d+U_p$	$GGA-PBE+U_d+U_p+vdW$
C_{11} (GPa)	131.293	201.29	233.269
C_{12} (GPa)	4.028	68.734	90.058
C_{13} (GPa)	42.544	48.644	58.849
C_{22} (GPa)	103.827	190.576	215.771
C_{23} (GPa)	12.643	8.052	18.775
C_{33} (GPa)	98.635	100.703	106.653
C_{44} (GPa)	44.365	36.669	39.994
C_{55} (GPa)	60.567	70.187	80.6
C_{66} (GPa)	33.829	104.078	106.212
$B_{\rm V}$ (GPa)	50.240	82.600	99.010
$B_{\rm R}$ (GPa)	48.632	68.254	78.834
$B_{\rm H}$ (GPa)	49.438	75.428	88.920
$G_{\rm V}$ (GPa)	46.050	66.660	71.230
$G_{\rm R}$ (GPa)	43.064	56.286	60.287
$G_{\rm H}$ (GPa)	44.559	61.474	65.758
$E_{\rm V}$ (GPa)	105.830	157.590	172.350
$E_{\rm R}$ (GPa)	99.749	132.449	144.122
$E_{\rm H}$ (GPa)	102.794	145.024	158.261
$ u_{ m V}$	0.150	0.180	0.210
$ u_{ m R}$	0.158	0.177	0.195
$ u_{ m H}$	0.153	0.180	0.203
$k_{ m V}$	1.090	1.240	1.390
$k_{ m R}$	1.129	1.213	1.308
$k_{ m H}$	1.109	1.227	1.352

VII. BORN CHARGE

The Born effective charge (BEC) embodies the atomic charge dynamics. The BEC has its origin in the screening of long-range Coulomb potential of the ions whose motion forms the phonon characteristics. The simulated BEC tensor is displayed in Table S7 for both GGA-PBE+vdW and GGA-PBE+ U_d+U_p+vdW .

TABLE S7. Born effective charge tensor of BWO using GGA-PBE+vdW and GGA-PBE+ $U_{\rm d}+U_{\rm p}+{\rm vdW}.$

	$\mathbf{Z}_{\mathbf{B}}$	Position	XX	xy	XZ	yx	уу	yz	ZX	zy	ZZ
BWO	Bi	4a	4.779	-0.263	0.495	-0.201	4.793	0.010	0.907	0.536	4.453
GGA-PBE+vdW	Bi	4a	4.781	0.264	0.493	0.202	4.792	-0.011	0.907	-0.536	4.454
	W	4a	8.196	0.005	0.450	-0.003	6.820	0.001	0.411	0.000	7.989
	O1	4a	-2.207	0.042	1.306	0.301	-2.201	0.639	1.214	1.222	-4.509
	O2	4a	-3.699	-2.142	-0.434	-2.112	-3.039	-0.339	-0.404	-0.254	-1.342
	O3	4a	-3.696	2.143	-0.432	2.112	-3.042	0.340	-0.402	0.256	-1.341
	O4	4a	-2.206	0.041	1.305	0.302	-2.202	0.571	1.212	1.225	-4.509
	O5	4a	-2.974	-0.254	0.452	0.117	-2.961	0.150	0.193	0.218	-2.598
	O6	4a	-2.975	0.253	-0.452	-0.116	-2.961	0.150	-0.193	0.218	-2.598
BWO	Bi	4a	4.791	-0.272	0.620	-0.362	4.736	0.123	1.028	0.385	4.251
$GGA-PBE+U_d+U_p$	Bi	4a	4.791	0.272	0.620	0.362	4.735	-0.123	1.028	-0.385	4.251
+vdW	W	4a	8.357	0.002	0.502	-0.002	7.950	0.000	0.573	0.000	8.582
	O1	4a	-2.450	0.160	1.230	0.370	-2.190	0.222	1.262	0.506	-4.382
	O2	4a	-3.560	-2.058	-0.134	-2.187	-3.527	-0.099	-0.075	0.005	-1.657
	O3	4a	-3.560	2.058	-0.134	2.187	-3.528	0.173	-0.075	-0.004	-1.657
	O4	4a	-2.450	0.160	1.230	0.370	-2.190	0.223	1.262	0.506	-4.383
	O5	4a	-2.960	-0.320	0.405	0.256	-2.993	0.249	0.130	0.276	-2.502
	06	4a	-2.959	0.320	-0.405	-0.256	-2.993	0.249	-0.130	0.276	-2.502