Reactivity of azido terpyridine Pd(II) and Pt(II) complexes towards 4,4,4-

trifluoro-2-butynoic acid: Structural insight into the triazolato coordination

mode

Ahmed M. Mansour,^{*a} Krzysztof Radacki,^b Gamal A. E. Mostafa,^c Essam A. Ali,^c and Ola R. Shehab ^{*d}

Supporting information

^{a.} Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates. <u>Mansour am@uaeu.ac.ae; inorganic am@yahoo.com</u>

^{b.} Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.

^{c.} Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.

^{d.} Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt. <u>Olashehab@sci.cu.edu.eg</u>; <u>OlaShehab_chem@yahoo.com</u>

Supporting i	nformation
--------------	------------

Fig. S1	ATR IR spectrum of the free terpyridine ligand.	S3		
Fig. S2	ATR IR spectrum of 1.	S4		
Fig. S3	ATR IR spectrum of 2 .	S5		
Fig. S4	Solid-state ¹³ C NMR spectrum of 1 .	S6		
Fig. S5	Solid-state ¹⁵ N NMR spectrum of 1 .	S7		
Fig. S6	Solid-state ¹⁹ F NMR spectrum of 1 .	S8		
Fig. S7	Solid-state ¹³ C NMR spectrum of 2 .	S9		
Fig. S8	Solid-state ¹⁵ N NMR spectrum of 2 .	S10		
Fig. S9	ASAP mass spectra: Experimental (Up) and theoretical (down) ISOTOPIC pattern	S11		
_	for 1 of a) $m/z = 968.9147$ and b) $m/z = 683.0772$.			
Fig. S10	ASAP mass spectra: Experimental (Up) and theoretical (down) ISOTOPIC pattern	S12		
	for 2 .			
Fig. S11	ATR IR spectrum of 3 .	S13		
Fig. S12	ATR IR spectrum of 4 .	S14		
Fig. S13	Solid-state ¹³ C NMR spectrum of 3 .	S15		
Fig. S14	Solid-state ¹⁵ N NMR spectrum of 3 .	S16		
Fig. S15	Solid-state ¹⁹ F NMR spectrum of 3 .	S17		
Fig. S16	Solid-state ³¹ P NMR spectrum of 3 .	S18		
Fig. S17	Solid-state ¹³ C NMR spectrum of 4 .	S19		
Fig. S18	Solid-state ¹⁵ N NMR spectrum of 4 .	S20		
Fig. S19	Solid-state ¹⁹ F NMR spectrum of 4 .	S21		
Fig. S20	ASAP mass spectra: Experimental (Up) and theoretical (down) ISOTOPIC pattern S22			
	for complex 3 of a) m/z = 975.9554 and b) m/z = 688.1186.			
Fig. S21	Electrospray ionization mass spectra: Experimental (Up) and theoretical (down)	S23		
	ISOTOPIC pattern for 4 .			
Fig. S22	ATR IR spectrum of 5 .	S24		
Fig. S23	ATR IR spectrum of 6 .	S25		
Fig. S24	Electrospray ionization mass spectra: Experimental (Up) and theoretical (down)	S26		
	ISOTOPIC pattern for complex 5 of a) $m/z = 854.1431$ and b) $m/z = 1315.0461$.			
Fig. S25	Electrospray ionization mass spectra: Experimental (Up) and theoretical (down)	S27		
	ISOTOPIC pattern for complex 6.			
Fig. S26	¹ H NMR spectrum of 5 .	S28		
Fig. S27	¹³ C NMR spectrum of 5 .	S29		
Fig. S28	¹⁹ F NMR spectrum of 5 .	S30		
Fig. S29	³¹ P NMR spectrum of 5 .	S31		
Fig. S30	HSQC { ¹ H, ¹³ C} NMR spectrum of 5 .	S32		
Table S1	Corrected energies values of Pd(II) and Pt(II) triazolate bound isomers (5 and 6).	S33		
Table S2	calculated bond lengths of the Pd(II) triazolate isomers (N1, N2 and N3).			
Table S3	calculated bond lengths of the Pt(II) triazolate isomers (N1, N2 and N3).	S37		
Table S4	able S4 The electronic configuration of the metal center (Pd or Pt) of the triazolate isomersS40			
	(N1, N2 and N3), its 4d (or 5d) electronic distribution and the natural atomic			
	charge			
Fig. S31	TDDFT spectrum of the triazolate isomers of 5 calculated at B3LYP/LANL2DZ level	S41		
	of theory using PCM solvation model.			

Fig. \$32	TDDFT spectrum of the triazolate isomers of 6 calculated at B3LYP/LANL2DZ level of theory using PCM solvation model.	S42
Table S5	Computed excitation energies (eV), electronic transition configurations and oscillator strengths (f) of rhenium(I) compounds (selected, f > 0.001) (Selected)	S43

Fig. S1 ATR IR spectrum of the free terpyridine ligand.

Fig. S2 ATR IR spectrum of 1.

Fig. S3 ATR IR spectrum of 2.

Fig. S6 Solid-state ¹⁹F NMR spectrum of 1.

Fig. S7 Solid-state ¹³C NMR spectrum of 2.

Fig. S8 Solid-state ¹⁵N NMR spectrum of 2.

Fig. S9 ASAP mass spectra: Experimental (Up) and theoretical (down) ISOTOPIC pattern for **1** of **a**) m/z = 968.9147 and **b**) m/z = 683.0772.

Fig. S10 ASAP mass spectra: Experimental (Up) and theoretical (down) ISOTOPIC pattern for 2.

Fig. S11 ATR IR spectrum of 3.

Fig. S12 ATR IR spectrum of 4.

Fig. S13 Solid-state ¹³C NMR spectrum of 3.

Fig. S14 Solid-state ¹⁵N NMR spectrum of 3.

Fig. S15 Solid-state ¹⁹F NMR spectrum of 3.

Fig. S16 Solid-state ³¹P NMR spectrum of 3.

Fig. S17 Solid-state ¹³C NMR spectrum of 4.

Fig. S19 Solid-state ¹⁹F NMR spectrum of 4.

Fig. S20 ASAP mass spectra: Experimental (Up) and theoretical (down) ISOTOPIC pattern for complex 3 of a) m/z = 975.9554 and b) m/z = 688.1186.

Fig. S21 Electrospray ionization mass spectra: Experimental (Up) and theoretical (down) ISOTOPIC pattern for 4.

Fig. S22 ATR IR spectrum of 5.

Fig. S23 ATR IR spectrum of 6.

Fig. S24 Electrospray ionization mass spectra: Experimental (Up) and theoretical (down) ISOTOPIC pattern for complex **5** of **a**) m/z = 854.1431 and **b**) m/z = 1315.0461.

Fig. S25 Electrospray ionization mass spectra: Experimental (Up) and theoretical (down) ISOTOPIC pattern for complex 6.

S28

Fig. S28¹⁹F NMR spectrum of 5.

Fig. S29 ³¹P NMR spectrum of 5.

Fig. S30 HSQC { 1 H, 13 C} NMR spectrum of 5.

F F F F F F F F F F F F F F F F F F F			
	N1	NO	N12
	NI	IN2	N3
• 5			
Electronic Energy (EE)	-2679.336996	-2679.196433	-2679.330052
Zero-point Energy Correction	0.643316	0.638885	0.643157
Thermal Correction to Energy	0.690310	0.679139	0.690140
Thermal Correction to Enthalpy	0.691254	0.680083	0.691084
Thermal Correction to Free Energy	0.553438	0.563539	0.553476
EE + Zero-point Energy	-2678.693680	-2678.557548	-2678.686896
EE + Thermal Energy Correction	-2678.646686	-2678.517294	-2678.639913
EE + Thermal Enthalpy Correction	-2678.645742	-2678.516350	-2678.638969
EE + Thermal Free Energy Correction	-2678.783558	-2678.632894	-2678.776576
Imaginary frequencies	0	10	0
• 6			
Electronic Energy (EE)	-3659.266939	-3659.272574	-3659.241110
Zero-point Energy Correction	0.769904	0.771597	0.769330
Thermal Correction to Energy	0.832047	0.833372	0.831495
Thermal Correction to Enthalpy	0.832992	0.834316	0.832439
Thermal Correction to Free Energy	0.661075	0.663870	0.660585
EE + Zero-point Energy	-3658.497035	-3658.500978	-3658.471780
EE + Thermal Energy Correction	-3658.434891	-3658.439203	-3658.409615
EE + Thermal Enthalpy Correction	-3658.433947	-3658.438258	-3658.408671
EE + Thermal Free Energy Correction	-3658.605864	-3658.608705	-3658.580525
Imaginary frequencies	0	0	0

 Table S1 Corrected energies values of Pd(II) and Pt(II) triazolate bound isomers (5 and 6).

	5	
N1	N2	N3
Pd-N34 = 1.97462	Pd–N34 = 1.98458	Pd–N34 = 1.97570
Pd-N35 = 2.06841	Pd–N35 = 2.09047	Pd–N35 = 2.07218
Pd-N36 = 2.07493	Pd–N36 = 2.09454	Pd–N36 = 2.07551
Pd-N69 = 2.02709	Pd–N69 = 2.02863	Pd–N69 = 2.03211
Pd-N63 = 2.07532	Pd–N63 = 2.09568	Pd–N63 = 2.06878
Pd-N64 = 1.97436	Pd–N64 = 1.98393	Pd–N64 = 1.97459
Pd-N65 = 2.06805	Pd–N65 = 2.08859	Pd–N65 = 2.07743
Pd-N71 = 2.02641	Pd–N72 = 2.03216	Pd–N71 = 2.03473
N69–N73 = 1.37872	N69–N75 = 1.35856	N69–N73 = 1.38611
N73–N77 = 1.35490	N69–N76 = 1.35956	N73–N77 = 1.34699
C20N73 = 3.23423	C20N75 = 2.94835	C20N73 = 3.15394
N34–Pd–N35 = 80.4	N34–Pd–N35 = 79.9	N34–Pd–N35 = 80.3
N34–Pd–N36 = 80.2	N34–Pd–N36 = 79.8	N34–Pd–N36 = 80.3
N34–Pd–N69 = 177.6	N34–Pd–N69 = 179.8	N34–Pd–N69 = 177.0
N35–Pd–N36 = 160.2	N35–Pd–N36 = 159.6	N35–Pd–N36 = 160.3
N35–Pd–N69 = 98.2	N35–Pd–N69 = 100.0	N35–Pd–N69 = 98.3
N36–Pd–N69 = 101.2	N36–Pd–N69 = 100.3	N36–Pd–N69 = 101.1
N63–Pd–N64 = 80.2	N63–Pd–N64 = 79.8	N63–Pd–N64 = 80.4
N64–Pd–N65 = 80.4	N64–Pd–N65 = 79.9	N64–Pd–N65 = 80.3
N64–Pd–N71 = 177.4	N64–Pd–N71 = 179.8	N64–Pd–N71 = 176.2
N63–Pd–N65 = 160.2	N63–Pd–N65 = 159.6	N63–Pd–N65 = 160.3
N63–Pd–N71 = 101.2	N63–Pd–N72 = 100.2	N63–Pd–N71 = 98.7
N65-Pd-N71 = 98.3	N65–Pd–N72 = 100.1	N65–Pd–N71 = 100.8

 Table S2 calculated bond lengths of the Pd(II) triazolate isomers (N1, N2 and N3).

For numbering, please see the figures below.

N2-isomer

N3-isomer

	6	
N1	N2	N3
Pt–N34 = 1.96947	Pt–N34 = 1.97758	Pt–N34 = 1.96990
Pt–N35 = 2.05598	Pt–N35 = 2.07729	Pt–N35 = 2.05829
Pt-N36 = 2.05472	Pt–N36 = 2.07918	Pt–N36 = 2.05763
Pt–N67 = 2.03856	Pt–N67 = 2.03320	Pt–N67 = 2.04240
N67–N69 = 1.38645	N67–N70 = 1.36070	N67–N69 = 1.39375
N69–N71 = 1.35034	N67–N71 = 1.36270	N69–N71 = 1.34447
C20N69 = 3.19623	C20N70 = 2.94163	C20N69 = 3.30979
N34–Pt–N35 = 80.6	N34–Pt–N35 = 80.0	N34–Pt–N35 = 80.5
N34-Pt-N36 = 80.4	N34–Pt–N36 = 80.0	N34–Pt–N36 = 80.5
N35–Pt–N67 = 98.0	N35–Pt–N67 = 99.8	N35–Pt–N67 = 98.4
N36–Pt–N67 = 101.0	N36–Pt–N67 = 100.1	N36–Pt–N67 = 100.7
N34–Pt–N67 = 177.6	N34–Pt–N67 = 179.8	N34–Pt–N67 = 176.8
N35–Pt–N36 = 160.8	N35–Pt–N36 = 160.0	N35–Pt–N36 = 160.7

 Table S3 calculated bond lengths of the Pt(II) triazolate isomers (N1, N2 and N3).

For numbering, please see the figures <u>below</u>.

N1-isomer

N3-isomer

Table S4: The electronic configuration of the metal center (Pd or Pt) of the triazolate isomers (N1, N2 and N3), its 4d (or 5d)							
electronic distribution and the natural atomic charge							
		Occupanc	ies of 4d or 5	d orbitals		natural	electronic arrangement of metal
	d_{xy}	d_{xz}	d_{yz}	$d_{x^2-y^2}$	d_{z^2}	charge of	center (Pd or Pt)
	2		-	2		metal	
						center	
• 5							
N1	1.94494	1.95223	1.90568	1.64607	1.34579	0.68498	$[Kr]5s^{0.31}4d^{8.79}5p^{0.22}5d^{0.01}$
	1.96439	1.93930	1.80233	1.18047	1.90757	0.68575	[Kr]5s ^{0.31} 4d ^{8.79} 5p ^{0.22} 5d ^{0.01}
N2	1.97206	1.94229	1.85229	1.10805	1.92903	0.68069	[Kr]5s ^{0.32} 4d ^{8.80} 5p ^{0.20} 5d ^{0.01}
	1.95252	1.96486	1.74671	1.47997	1.65949	0.68299	[Kr]5s ^{0.32} 4d ^{8.80} 5p ^{0.20} 5d ^{0.01}
N3	1.93959	1.94465	1.79695	1.20524	1.90079	0.69165	[Kr]5s ^{0.30} 4d ^{8.79} 5p ^{0.22} 5d ^{0.01}
	1.95916	1.95146	1.73449	1.39017	1.75174	0.69155	[Kr]5s ^{0.30} 4d ^{8.79} 5p ^{0.22} 5d ^{0.01}
• 6							
N1	1.91865	1.93822	1.66505	1.41819	1.65163	0.71638	[Xe]6s ^{0.47} 5d ^{8.59} 6p ^{0.22} 6d
N2	1.94685	1.89800	1.80598	1.05430	1.88533	0.73683	[Xe]6s ^{0.47} 5d ^{8.59} 6p ^{0.20} 6d ^{0.01}
N3	1.93263	1.92642	1.68693	1.21879	1.83169	0.70854	[Xe]6s ^{0.47} 5d ^{8.60} 6p ^{0.22} 6d ^{0.02}

Fig. S31 TDDFT spectrum of the triazolate isomers of 5 calculated at B3LYP/LANL2DZ level of theory using PCM solvation model.

Fig. S32 TDDFT spectrum of the triazolate isomers of 6 calculated at B3LYP/LANL2DZ level of theory using PCM solvation model.

Table S5 Computed excitation energies (eV), electronic transition configurations and oscillator strengths (f) of rhenium(l) compounds (selected $f > 0.001$) (Selected)			
Energy	Wavelength		
(cm^{-1})	(nm)	f	Major contributions
(0111)			
• Pd(II) triazolate is	omers	
	✓ N1		
27040	369	1.2152	HOMO→LUMO (94%)
32137	311	0.1118	HOMO–3→LUMO (23%)
32656	306	0.1615	HOMO–4→LUMO+1 (58%)
	✓ N2		
26835	372	1.2845	HOMO→LUMO (92%)
28163	355	0.0816	HOMO−2→LUMO (68%)
31914	313	0.0342	HOMO−1→LUMO (29%), HOMO−1→LUMO+1 (37%)
32327	309	0.1331	HOMO–8→LUMO (37%), HOMO–1→LUMO+1 (32%)
	✓ N3		
26991	370	1.0199	HOMO→LUMO (74%)
28223	354	0.0645	HOMO–3→LUMO (40%)
32690	305	0.2082	HOMO–9→LUMO (21%), HOMO–3→LUMO+1 (33%)
Pt(II) triazolate isomers			
✓ N1			
24954	400	0.6288	HOMO→LUMO (93%)
28638	349	0.0272	HOMO–9→LUMO (36%), HOMO–4→LUMO (39%)
30813	324	0.2778	HOMO–10→LUMO (78%)
32694	305	0.0663	HOMO–9→L+1 (49%), HOMO–4→LUMO+1 (22%)
34117	293	0.8383	HOMO→LUMO+3 (69%)
✓ N2			
24479	408	0.673	HOMO→LUMO (92%)
27990	357	0.0905	HOMO–7→LUMO (57%)
30378	329	0.0626	HOMO–9→LUMO (72%)
30617	326	0.2639	HOMO–10→LUMO (70%),
31576	316	0.1009	HOMO–8→LUMO (49%), HOMO–4→LUMO+7 (23%)
31900	313	0.0541	HOMO–7→LUMO+1 (61%)
32522	307	0.1003	HOMO–6→LUMO+1 (47%), HOMO–4→LUMO+7 (35%)
33897	295	0.6919	HOMO→LUMO+2 (52%)
	✓ N3		

24795	403	0.6226	HOMO→LUMO (88%)
25860	386	0.0014	HOMO−6→LUMO (92%)
26776	373	0.0048	HOMO−1→LUMO (98%)
28385	352	0.0076	HOMO–9→LUMO (22%), HOMO–3→LUMO (60%)
28753	347	0.022	HOMO–9→LUMO (22%), HOMO–4→LUMO+1 (30%)
29311	341	0.0135	HOMO–5→LUMO (61%)
30883	323	0.2503	HOMO–10→LUMO (72%)
33907	294	0.9382	HOMO→LUMO+2 (84%)