Supplementary Information

Visible-Light-Mediated Synthesis of Oxime Esters via Multicomponent Reactions of Aldehydes, Aryl Amines, and N-Hydroxyphthalimide Esters

Anh Thu Nguyen¹ and Hee-Kwon Kim^{1,2*}

¹ Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea

² Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea

* Corresponding author.

E-mail address: hkkim717@jbnu.ac.kr (H. Kim).

Table of Contents

Table of Contents	S1
General Information	S2
Screening of reaction conditions for the synthesis of oxime esters	S3
General procedure of the synthesis of oxime esters	S6
Chracterization of oxime esters	S7
¹ H and ¹³ C NMR Spectra	S20

1. General Information

Commercial chemicals and solvents were used without any purification. Reaction progress was analyzed by thin-layer chromatography (TLC) using silica gel 60 F_{254} pre-coated aluminum plate from Merck and TLC spots were observed under UV light (254nm) exposure. Flash chromatography was carried out using 230–400 mesh silica gel and analytical grade solvents. Stuart SMP10 Melting Point Apparatus was used to record melting points of products. Structure elucidation by NMR (¹H and ¹³C NMR) was performed on Bruker Avance 400 MHz spectrometer. The chemical shifts were reported in δ units (ppm) relative to the residual protonated solvent resonance, the coupling constants (*J*) quoted in Hz, and multiplicity of signals was abbreviated as follows: singlet (s); doublet (d); doublet of doublet (dd); triplet (t); multiplet (m).

2. Screening of reaction conditions for the synthesis of oxime esters

0 1a	$H + \underbrace{\bigvee}_{2}^{NH_2} + \underbrace{\bigvee}_{2}$	O-N 3a	Light" (<u>3 mol%)</u> I, rt, 16 h 4a
Entry	Light source	Yield ^b (%)	
1	CFL	71	
2	White LED	87	
3	Green LED	88	
4	Blue LED	92	

Table S1. Screening of reaction condition in the synthesis of oxime esters^a

^a Reaction conditions: aldehyde 1a (1.0 mmol), aniline 2 (1.0 mmol), N-hydroxyphthalimide ester 3a (1.2 mmol), eosin Y (0.03 mmol), MeCN (2 mL), room temperature, blue LEDs (5 W x 2 bulbs), 16 h. ^b Isolated yield after purification by flash column chromatography.

Table S2. Amount of eosin Y in the preparation of oxime esters.

^a Reaction conditions: aldehyde 1a (1.0 mmol), aniline 2a (1.0 mmol), N-hydroxyphthalimide ester 3a (1.2 mmol), eosin Y, MeCN (2 mL), blue LEDs (5 W x 2 bulbs), 16 h. ^b Isolated yield after purification by flash column chromatography.

	H + NH_2 + $O-N$ Blue LEDs" Eosin Y (3 mol MeCN, rt, 16 H	$\overset{\text{H}}{\longrightarrow} \overset{\text{H}}{\longrightarrow} \overset{\text{O}}{\longrightarrow} \overset{\text{O}}{\longrightarrow} \overset{\text{H}}{\longrightarrow} \overset{\text{O}}{\longrightarrow} \overset{\text{O}}{\overset$
14	- 00	
Entry	1,3-dioxoisoindolin-2-yl butyrate (3a)	Yield ^b (%)
1	1,3-dioxoisoindolin-2-yl butyrate (2.0 equiv)	92
2	1,3-dioxoisoindolin-2-yl butyrate (1.5 equiv)	92
3	1,3-dioxoisoindolin-2-yl butyrate (1.2 equiv)	92
4	1,3-dioxoisoindolin-2-yl butyrate (1.0 equiv.)	84
5	1,3-dioxoisoindolin-2-yl butyrate (0.8 equiv.)	73

Table S3. Amount of 1,3-dioxoisoindolin-2-yl butyrate in the preparation of oxime esters.

^a Reaction conditions: aldehyde 1a (1.0 mmol), aniline 2 (1.0 mmol), N-hydroxyphthalimide ester 3a (1.2 mmol), eosin Y (0.03 mmol), MeCN (2 mL), blue LEDs (5 W x 2 bulbs), 16 h. ^b Isolated yield after purification by flash column chromatography.

3. General procedure of the synthesis of oxime esters (4a-4n, 5a-5n)

Benzaldehyde **1a** (0.106 g, 1.0 mmol, 1.0 equiv.), aniline **2a** (0.093 g, 1.0 mmol), 1,3dioxoisoindolin-2-yl butyrate (NHP ester) **3a** (0.233 g, 1.2 mmol), and eosin Y (0.021 g, 0.03 mmol) were added to acetonitrile (2 mL). The reaction mixture was stirred under irradiation of 5 W blue LEDs (\times 2) at room temperature for 16 hours. The reaction product was extracted with EtOAc (50 mL) and washed with aqueous NaHCO₃ (50 mL), followed by water (50 mL). The organic layer was dried with anhydrous sodium sulfate and was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with hexane-EtOAc as eluent to afford the target product (**4a**) as a yellow oil (0.175 g, 92%).

4. Characterization data for oxime esters

(E)-Benzaldehyde O-butyryl oxime (4a)

4a was obtained in 92% yield (175.7 mg) according to the general procedure (Hexan/EtOAc, 10:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 7.75-7.72 (m, 2H), 7.49-7.39 (m, 3H), 2.46 (t, *J* = 7.2 Hz, 2H), 1.82-1.72 (m, 2H), 1.02 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 155.9, 131.7, 130.2, 128.9 (2C), 128.4 (2C), 34.7, 18.4, 13.7; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₁H₁₄NO₂⁺ = 192.1025; found 192.1022.

(E)-4-Methylbenzaldehyde O-butyryl oxime (4b)

4b was obtained in 89% yield (182.4 mg) according to the general procedure (Hexan/EtOAc, 10:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 2.47-2.39 (m, 5H), 1.81-1.72 (m, 2H), 1.02 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 155.9, 142.2, 129.6 (2C), 128.4 (2C), 127.4, 34.7, 21.6, 18.4, 13.7; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₂H₁₆NO₂⁺ = 206.1181; found 206.1180.

(E)-4-Chlorobenzaldehyde O-butyryl oxime (4c)

4c was obtained in 93% yield (209.2 mg) according to the general procedure (Hexan/EtOAc, 10:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.69-7.66 (m, 2H), 7.41-7.39 (m, 2H), 2.45 (t, *J* = 7.6 Hz, 2H), 1.81-1.71 (m, 2H), 1.02 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 154.7, 137.8, 129.5 (2C), 129.3 (2C), 128.7, 34.6, 18.4, 13.7; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₁H₁₃ClNO₂⁺ = 226.0635; found 226.0636.

(E)-4-Nitrobenzaldehyde O-butyryl oxime (4d)

4d was obtained in 91% yield (214.7 mg) according to the general procedure (Hexan/EtOAc, 10:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.29-8.27 (m, 2H), 7.94-7.91 (m, 2H), 2.48 (t, J = 7.2 Hz, 2H), 1.80-1.75 (m, 2H), 1.03 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 153.5, 149.5, 136.3, 129.1 (2C), 124.1 (2C), 34.5, 18.3, 13.6; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₁H₁₃N₂O₄⁺ = 237.0875; found 237.0873.

(E)-2-Methylbenzaldehyde O-butyryl oxime (4e)

4e was obtained in 83% yield (170.2 mg) according to the general procedure (Hexan/EtOAc, 10:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.35 (m, 1H), 7.24-7.22 (m, 2H), 2.49-2.45 (m, 5H), 1.82-1.73 (m, 2H), 1.03 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 154.8, 138.1, 131.3, 130.9, 128.5, 128.2, 126.4, 34.7, 19.9, 18.4, 13.7; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₂H₁₆NO₂⁺ = 206.1181; found 206.1180.

(E)-2-Hydroxybenzaldehyde O-butyryl oxime (4f)

4f was obtained in 86% yield (178.0 mg) according to the general procedure (Hexan/EtOAc, 10:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 9.83 (br s, 1H), 8.42 (s, 1H), 7.40-7.35 (m, 1H), 7.24-7.22 (m, 1H), 7.06 (d, J = 8.0 Hz, 1H), 6.96-6.93 (m, 1H), 2.45 (t, J = 7.2 Hz, 2H), 1.82-1.72 (m, 2H), 1.03 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 158.4, 157.3, 133.1, 131.9, 119.8, 117.5, 114.9, 34.3, 18.3, 13.7; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₁H₁₄NO₃⁺ = 208.0974; found 208.0971.

(E)-2-Bromobenzaldehyde O-butyryl oxime (4g)

4g was obtained in 91% yield (245.7 mg) according to the general procedure (Hexan/EtOAc, 10:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.08-8.06 (m, 1H), 7.62-7.59 (m, 1H), 7.36-7.30 (m, 2H), 2.47 (t, J = 7.6 Hz, 2H), 1.83-1.73 (m, 2H), 1.03 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 155.2, 133.2, 132.8, 129.8, 128.8, 127.8, 124.9, 34.6, 18.4, 13.7; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₁H₁₃BrNO₂⁺ = 270.0130; found 270.0128.

(E)-1-Naphthaldehyde O-butyryl oxime (4h)

4h was obtained in 80% yield (192.8 mg) according to the general procedure (Hexan/EtOAc, 10:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.98 (s, 1H), 8.63-8.60 (m, 1H), 7.98-7.90 (m, 3H), 7.66-7.62 (m, 1H), 7.58-7.50 (m, 2H), 2.54-2.51 (m, 2H), 1.85-1.79 (m, 2H), 1.06 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 155.8, 133.8, 132.3, 130.9, 129.6, 128.9, 127.8, 126.5, 126.3, 125.2, 124.6, 34.8, 18.4, 13.8; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₅H₁₆NO₂⁺ = 242.1181; found 242.1179.

(E)-Picolinaldehyde O-butyryl oxime (4i)

4i was obtained in 89% yield (170.8 mg) according to the general procedure (Hexan/EtOAc, 3:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 4.8 Hz, 1H), 8.45 (s, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.76 (td, J = 7.6, 1.6 Hz, 1H), 7.37-7.34 (m, 1H), 2.47 (t, J = 7.6 Hz, 2H), 1.81-1.72 (m, 2H), 1.01 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 156.5, 150.0, 149.8, 136.8, 125.5, 122.1, 34.6, 18.3, 13.7; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₀H₁₃N₂O₂⁺ = 193.0977; found 193.0975.

(E)-Thiophene-2-carbaldehyde O-butyryl oxime (4j)

4j was obtained in 84% yield (165.4 mg) according to the general procedure (Hexan/EtOAc, 7:1); white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 7.49-7.47 (m, 1H), 7.39 (d, J =3.6 Hz, 1H), 7.09-7.08 (m, 1H), 2.43 (t, J = 7.2 Hz, 2H), 1.79-1.70 (m, 2H), 1.00 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 150.3, 133.2, 132.8, 130.4, 127.6, 34.6, 18.4, 13.7; HRMS (ESI) m/z (M+H)⁺ calcd for C₉H₁₂NO₂S ⁺ = 198.0589; found 198.0586.

(E)-Butyraldehyde O-butyryl oxime (4k)

4k was obtained in 85% yield (133.4 mg) according to the general procedure (Hexan/EtOAc, 10:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (t, J = 6.4 Hz, 1H), 2.44-2.32 (m, 4H), 1.76-1.67 (m, 2H), 1.64-1.54 (m, 2H), 1.03-0.97 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 159.1, 34.7, 31.3, 28.7, 19.7, 18.4, 13.7; HRMS (ESI) m/z (M+H)⁺ calcd for C₈H₁₆NO₂⁺ = 158.1181; found 158.1178.

(E)-3-Methylbutanal O-butyryl oxime (4l)

4I was obtained in 90% yield (153.9 mg) according to the general procedure (Hexan/EtOAc, 10:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (t, *J* = 6.8 Hz, 1H), 2.34 (t, *J* = 7.6 Hz, 2H), 2.25 (t, *J* = 6.8 Hz, 2H), 1.94-1.84 (m, 1H), 1.76-1.67 (m, 2H), 1.00-0.96 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 158.6, 37.9, 34.6, 26.6, 22.3 (2C), 18.4, 13.7; HRMS (ESI) m/z (M+H)⁺ calcd for C₉H₁₈NO₂⁺ = 172.1338; found 172.1336.

(E)-Pivalaldehyde O-butyryl oxime (4m)

N N

4m was obtained in 93% yield (159.0 mg) according to the general procedure (Hexan/EtOAc, 10:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 2.33 (t, *J* = 7.6 Hz, 2H), 1.73-1.64 (m, 2H), 1.16 (s, 9H), 0.96 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 166.0, 34.7, 34.4, 27.1 (3C), 18.3, 13.7; HRMS (ESI) m/z (M+H)⁺ calcd for C₉H₁₈NO₂ ⁺ = 172.1338; found 172.1335.

(E)-Cyclohexanecarbaldehyde O-butyryl oxime (4n)

4n was obtained in 91% yield (179.2 mg) according to the general procedure (Hexan/EtOAc, 10:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 7.2 Hz, 1H), 2.45-2.32 (m, 3H), 1.84-1.68 (m, 7H), 1.36-1.19 (m, 5H), 1.01-0.96 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 162.6, 38.6, 34.7, 29.9 (2C), 25.6, 25.2 (2C), 18.4, 13.7; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₁H₂₀NO₂⁺ = 198.1494; found 198.1492.

(E)-Benzaldehyde O-benzoyl oxime (5a)

5a was obtained in 94% yield (211.5 mg) according to the general procedure (Hexan/EtOAc, 10:1); white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.15-8.13 (m, 2H), 7.83 (d, *J* = 6.8 Hz, 2H), 7.61 (t, *J* = 7.2 Hz, 1H), 7.51-7.44 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 156.8, 133.4, 131.8, 130.1, 129.7, 128.9 (2C), 128.7 (2C),128.6 (2C), 128.5 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₄H₁₂NO₂⁺ = 226.0868; found 226.0865.

(E)-Benzaldehyde O-(4-methoxybenzoyl) oxime (5b)

5b was obtained in 95% yield (242.2 mg) according to the general procedure (Hexan/EtOAc, 5:1); white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 8.11-8.07 (m, 2H), 7.83-7.79 (m, 2H), 7.51-7.42 (m, 3H), 6.99-6.95 (m, 2H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 163.7, 156.4, 131.8 (2C), 131.7, 130.3, 128.9 (2C), 128.5 (2C), 120.9, 113.9 (2C), 55.5; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₅H₁₄NO₃⁺ = 256.0974; found 256.0971.

(E)-Benzaldehyde O-(4-methylbenzoyl) oxime (5c)

5c was obtained in 96% yield (229.4 mg) according to the general procedure (Hexan/EtOAc, 10:1); white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 8.04 (d, *J* = 8.4 Hz, 2H), 7.82-7.80 (m, 2H), 7.51-7.43 (m, 3H), 7.30 (d, *J* = 8.0 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 164.0, 156.6, 144.2, 131.7, 130.3, 129.8 (2C), 129.3 (2C), 128.9 (2C), 128.5 (2C), 125.9, 21.7; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₅H₁₄NO₂⁺ = 240.1025; found 240.1023.

(E)-Benzaldehyde O-(2,4,6-trimethylbenzoyl) oxime (5d)

5d was obtained in 90% yield (240.3 mg) according to the general procedure (Hexan/EtOAc, 10:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.80-7.76 (m, 2H), 7.52-7.43 (m, 3H), 6.90 (s, 2H), 2.38 (s, 6H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 156.6, 140.0, 135.9 (2C), 131.8 (2C), 130.1, 128.9, 128.8, 128.5 (2C), 128.4 (2C), 21.2, 19.8 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₇H₁₈NO₂⁺ = 268.1338; found 268.1335.

(E)-Benzaldehyde O-(4-chlorobenzoyl) oxime (5e)

5e was obtained in 87% yield (225.3 mg) according to the general procedure (Hexan/EtOAc, 10:1); white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 8.09-8.05 (m, 2H), 7.81-7.79 (m, 2H), 7.53-7.43 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 157.0, 139.9, 131.9, 131.1 (2C), 129.9, 128.9 (4C), 128.5 (2C), 127.1; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₄H₁₁ClNO₂⁺ = 260.0478; found 260.0477.

(E)-Benzaldehyde O-(4-(trifluoromethyl)benzoyl) oxime (5f)

5f was obtained in 82% yield (240.2 mg) according to the general procedure (Hexan/EtOAc, 10:1); white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 8.38-8.32 (m, 2H), 7.88-7.81 (m, 3H), 7.65 (t, J = 7.6 Hz, 1H), 7.53-7.44 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.7, 157.4, 132.9, 132.0, 131.5 (q, J = 32.8 Hz), 129.9 (q, J = 3.6 Hz), 129.8, 129.6, 129.3, 129.0 (2C), 128.6 (2C), 126.6 (q, J = 3.7 Hz), 125.0 (q, J = 270.4 Hz); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₅H₁₁F₃NO₂⁺ = 294.0742; found 294.0740.

(E)-Benzaldehyde O-(4-nitrobenzoyl) oxime (5g)

5g was obtained in 77% yield (207.9 mg) according to the general procedure (Hexan/EtOAc, 5:1); white solid; ¹H NMR (400 MHz, DMSO-d₆) δ 10.6 (s, 1H), 8.39-8.37 (m, 2H), 8.21-8.18 (m, 2H), 7.80 (d, J = 7.6 Hz, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.15 (t, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 164.4, 149.6, 141.1, 139.2, 129.7 (2C), 129.2 (2C), 124.6, 124.0 (2C), 120.9 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₄H₁₁N₂O₄⁺ = 271.0719; found 271.0718.

(E)-Benzaldehyde O-(3-bromobenzoyl) oxime (5h)

5h was obtained in 90% yield (273.6 mg) according to the general procedure (Hexan/EtOAc, 10:1); white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.27 (t, *J* = 1.6 Hz, 1H), 8.08-8.06 (m, 1H), 7.82-7.80 (m, 2H), 7.76-7.73 (m, 1H), 7.51-7.44 (m, 3H), 7.38 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.6, 157.2, 136.4, 132.6, 132.0, 130.6, 130.2, 129.9, 129.0 (2C), 128.6 (2C), 128.3, 122.7; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₄H₁₁BrNO₂ ⁺ = 303.9973; found 303.9971.

(E)-Benzaldehyde O-(1-naphthoyl) oxime (5i)

5i was obtained in 84% yield (231.0 mg) according to the general procedure (Hexan/EtOAc, 10:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, *J* = 8.4 Hz, 1H), 8.58 (s, 1H), 8.24 (dd, *J* = 7.2, 1.6 Hz, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.85-7.83 (m, 2H), 7.67-7.64 (m, 1H), 7.59-7.45 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 156.9, 133.9, 133.7, 131.8, 131.4, 130.2, 129.9, 128.9 (2C), 128.6, 128.5 (2C), 128.0, 126.5, 125.7, 124.5 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₈H₁₄NO₂⁺ = 276.1025; found 276.1022.

(E)-Benzaldehyde O-([1,1'-biphenyl]-4-carbonyl) oxime (5j)

5j was obtained in 81% yield (243.8 mg) according to the general procedure (Hexan/EtOAc, 10:1); white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 8.22-8.20 (m, 2H), 7.84-7.82 (m, 2H), 7.73-7.71 (m, 2H), 7.66-7.64 (m, 2H), 7.53-7.40 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 156.8, 146.2, 139.9, 131.8, 130.3 (2C), 130.2 (2C), 129.0 (2C), 128.9 (2C), 128.5 (2C), 128.3, 127.3 (2C), 127.2 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₂₀H₁₆NO₂⁺ = 302.1181; found 302.1179.

(E)-Benzaldehyde O-(3,3-dimethylbutanoyl) oxime (5k)

5k was obtained in 95% yield (208.1 mg) according to the general procedure (Hexan/EtOAc, 10:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.75-7.73 (m, 2H), 7.49-7.40 (m, 3H), 2.35 (s, 2H), 1.11 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 155.9, 131.6, 130.3, 128.9 (2C), 128.4 (2C), 46.3, 31.1, 29.7 (3C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₃H₁₈NO₂⁺ = 220.1338; found 220.1336.

(E)-Benzaldehyde O-(2-ethylhexanoyl) oxime (5l)

51 was obtained in 94% yield (232.2 mg) according to the general procedure (Hexan/EtOAc, 10:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.76-7.74 (m, 2H), 7.49-7.40 (m, 3H), 2.46-2.39 (m, 1H), 1.79-1.53 (m, 4H), 1.38-1.29 (m, 4H), 1.00-0.88 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 156.1, 131.6, 130.3, 128.9 (2C), 128.4 (2C), 46.1, 31.8, 29.6, 25.6, 22.6, 13.9, 11.9; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₅H₂₂NO₂⁺ = 248.1651; found 248.1650.

(E)-Benzaldehyde O-undecanoyl oxime (5m)

5m was obtained in 92% yield (265.9 mg) according to the general procedure (Hexan/EtOAc, 10:1); white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.75-7.73 (m, 2H), 7.49-7.40 (m, 3H), 2.47 (t, *J* = 7.6 Hz, 2H), 1.77-1.70 (m, 2H), 1.41-1.27 (m, 14H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 155.9, 131.6, 130.3, 128.9 (2C), 128.4 (2C), 32.9, 31.9, 29.5, 29.4, 29.3, 29.2, 29.1, 24.9, 22.7, 14.1; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₈H₂₈NO₂⁺ = 290.2120; found 290.2118.

(E)-Benzaldehyde O-cyclohexanecarbonyl oxime (5n)

5n was obtained in 94% yield (217.1 mg) according to the general procedure (Hexan/EtOAc, 10:1); white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.74-7.72 (m, 2H), 7.48-7.39 (m, 3H), 2.51-2.44 (m, 1H), 2.01-1.94 (m, 2H), 1.83-1.79 (m, 2H), 1.69-1.53 (m, 3H), 1.37-

1.27 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 156.1, 131.6, 130.3, 128.9 (2C), 128.4 (2C), 42.1, 28.9 (2C), 25.7, 25.4 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₄H₁₈NO₂⁺ = 232.1338; found 232.1337.

(*E*)-N,1-Diphenylmethanimine (6a)

6a was obtained in 97% yield (175.6 mg) according to the general procedure (Hexan/EtOAc, 10:1); yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.502 (s, 1H), 7.97-7.95 (m, 2H), 7.52-7.43 (m, 5H), 7.30-7.26 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.4, 152.1, 136.3, 131.4, 129.2 (2C), 128.9 (2C), 128.8 (2C), 126.0, 120.9 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₃H₁₂N⁺ = 182.0970; found 182.0967.

¹H and ¹³C NMR spectra of oxime esters

(E)-Benzaldehyde O-butyryl oxime (4a)

¹H NMR spectrum of (*E*)-benzaldehyde O-butyryl oxime (**4a**)

¹³C NMR spectrum of (*E*)-benzaldehyde O-butyryl oxime (**4a**)

(E)-4-Methylbenzaldehyde O-butyryl oxime (4b)

¹H NMR spectrum of (*E*)-4-methylbenzaldehyde O-butyryl oxime (**4b**)

¹³C NMR spectrum of (*E*)-4-methylbenzaldehyde O-butyryl oxime (**4b**)

(E)-2-Chlorobenzaldehyde O-butyryl oxime (4c)

¹H NMR spectrum of (*E*)-2-chlorobenzaldehyde O-butyryl oxime (4c)

¹³C NMR spectrum of (*E*)-2-chlorobenzaldehyde O-butyryl oxime (4c)

(E)-4-Nitrobenzaldehyde O-butyryl oxime (4d)

¹H NMR spectrum of (*E*)-4-nitrobenzaldehyde O-butyryl oxime (**4d**)

¹³C NMR spectrum of (*E*)-4-nitrobenzaldehyde O-butyryl oxime (**4d**)

¹H NMR spectrum of (E)-2-methylbenzaldehyde O-butyryl oxime (4e)

¹³C NMR spectrum of (*E*)-2-methylbenzaldehyde O-butyryl oxime (**4e**)

¹H NMR spectrum of (E)-2-hydroxybenzaldehyde O-butyryl oxime (**4f**)

¹³C NMR spectrum of (E)-2-hydroxybenzaldehyde O-butyryl oxime (**4f**)

¹H NMR spectrum of (E)-2-bromobenzaldehyde O-butyryl oxime (**4g**)

¹³C NMR spectrum of (E)-2-bromobenzaldehyde O-butyryl oxime (**4g**)

(E)-1-Naphthaldehyde O-butyryl oxime (4h)

¹H NMR spectrum of (*E*)-1-naphthaldehyde O-butyryl oxime (**4h**)

¹³C NMR spectrum of (*E*)-1-naphthaldehyde O-butyryl oxime (**4h**)

(E)-Picolinaldehyde O-butyryl oxime (4i)

¹H NMR spectrum of (*E*)-picolinaldehyde O-butyryl oxime (**4i**)

¹³C NMR spectrum of (*E*)-picolinaldehyde O-butyryl oxime (**4i**)

(E)-Thiophene-2-carbaldehyde O-butyryl oxime (4j)

¹H NMR spectrum of (*E*)-thiophene-2-carbaldehyde O-butyryl oxime (**4j**)

¹³C NMR spectrum of (E)-thiophene-2-carbaldehyde O-butyryl oxime (**4j**)

(E)-Butyraldehyde O-butyryl oxime (4k)

¹H NMR spectrum of (*E*)-butyraldehyde O-butyryl oxime (**4**k)

¹³C NMR spectrum of (*E*)-butyraldehyde O-butyryl oxime (**4**k)

(E)-3-Methylbutanal O-butyryl oxime (4l)

¹H NMR spectrum of (E)-3-methylbutanal O-butyryl oxime (**4**I)

¹³C NMR spectrum of (*E*)-3-methylbutanal O-butyryl oxime (41)

(E)-Pivalaldehyde O-butyryl oxime (4m)

¹H NMR spectrum of (*E*)-pivalaldehyde O-butyryl oxime (**4m**)

¹³C NMR spectrum of (*E*)-pivalaldehyde O-butyryl oxime (**4m**)

(E)-Cyclohexanecarbaldehyde O-butyryl oxime (4n)

¹H NMR spectrum of (*E*)-cyclohexanecarbaldehyde O-butyryl oxime (4n)

¹³C NMR spectrum of (*E*)-cyclohexanecarbaldehyde O-butyryl oxime (4n)

(E)-Benzaldehyde O-benzoyl oxime (5a)

¹H NMR spectrum of (*E*)-benzaldehyde O-benzoyl oxime (**5a**)

¹³C NMR spectrum of (*E*)-benzaldehyde O-benzoyl oxime (5a)

(E)-Benzaldehyde O-(4-methoxybenzoyl) oxime (5b)

¹H NMR spectrum of (*E*)-benzaldehyde O-(4-methoxybenzoyl) oxime (**5b**)

¹³C NMR spectrum of (*E*)-benzaldehyde O-(4-methoxybenzoyl) oxime (**5b**)

¹H NMR spectrum of (*E*)-benzaldehyde O-(4-methylbenzoyl) oxime (**5c**)

¹³C NMR spectrum of (*E*)-benzaldehyde O-(4-methylbenzoyl) oxime (**5**c)

(E)-Benzaldehyde O-(2,4,6-trimethylbenzoyl) oxime (5d)

¹H NMR spectrum of (*E*)-benzaldehyde O-(2,4,6-trimethylbenzoyl) oxime (5d)

¹³C NMR spectrum of (*E*)-benzaldehyde O-(2,4,6-trimethylbenzoyl) oxime (5d)

¹H NMR spectrum of (*E*)-benzaldehyde O-(4-chlorobenzoyl) oxime (**5e**)

¹³C NMR spectrum of (*E*)-benzaldehyde O-(4-chlorobenzoyl) oxime (**5e**)

(E)-Benzaldehyde O-(4-(trifluoromethyl)benzoyl) oxime (5f)

¹H NMR spectrum of (*E*)-benzaldehyde O-(4-(trifluoromethyl)benzoyl) oxime (**5**f)

¹³C NMR spectrum of (*E*)-benzaldehyde O-(4-(trifluoromethyl)benzoyl) oxime (5f)

(E)-Benzaldehyde O-(4-nitrobenzoyl) oxime (5g)

¹H NMR spectrum of (*E*)-benzaldehyde O-(4-nitrobenzoyl) oxime (**5g**)

¹³C NMR spectrum of (*E*)-benzaldehyde O-(4-nitrobenzoyl) oxime (**5**g)

¹H NMR spectrum of (*E*)-benzaldehyde O-(3-bromobenzoyl) oxime (**5h**)

¹³C NMR spectrum of (*E*)-benzaldehyde O-(3-bromobenzoyl) oxime (**5h**)

¹H NMR spectrum of (*E*)-benzaldehyde O-(1-naphthoyl) oxime (**5**i)

¹³C NMR spectrum of (*E*)-benzaldehyde O-(1-naphthoyl) oxime (5i)

(E)-Benzaldehyde O-([1,1'-biphenyl]-4-carbonyl) oxime (5j)

¹H NMR spectrum of (*E*)-benzaldehyde O-([1,1'-biphenyl]-4-carbonyl) oxime (**5j**)

¹³C NMR spectrum of (*E*)-benzaldehyde O-([1,1'-biphenyl]-4-carbonyl) oxime (5j)

(E)-Benzaldehyde O-(3,3-dimethylbutanoyl) oxime (5k)

¹H NMR spectrum of (*E*)-benzaldehyde O-(3,3-dimethylbutanoyl) oxime (5k)

¹³C NMR spectrum of (*E*)-benzaldehyde O-(3,3-dimethylbutanoyl) oxime (5k)

¹H NMR spectrum of (*E*)-benzaldehyde O-(2-ethylhexanoyl) oxime (**5**I)

¹³C NMR spectrum of (*E*)-benzaldehyde O-(2-ethylhexanoyl) oxime (**5**I)

(E)-Benzaldehyde O-undecanoyl oxime (5m)

¹H NMR spectrum of (*E*)-benzaldehyde O-undecanoyl oxime (**5m**)

¹³C NMR spectrum of (*E*)-benzaldehyde O-undecanoyl oxime (5m)

(E)-Benzaldehyde O-cyclohexanecarbonyl oxime (5n)

¹H NMR spectrum of (*E*)-benzaldehyde O-cyclohexanecarbonyl oxime (**5n**)

¹³C NMR spectrum of (E)-benzaldehyde O-cyclohexanecarbonyl oxime (**5n**)

(E)-N,1-Diphenylmethanimine (6a)

¹H NMR spectrum of (*E*)-N,1-diphenylmethanimine (**6a**)

¹³C NMR spectrum of (*E*)-N,1-diphenylmethanimine (**6a**)