N-alkylation of aromatic amines with alcohols by using a commercially available Ru complex under mild conditions

Rita Mocci,^a Luciano Atzori,^a Walter Baratta,^b Lidia De Luca,^c and Andrea Porcheddu,^{*a}

^a Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy.

^b Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, via delle Scienze 206, 33100 Udine

^c Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy

Table of contents

General methods and materials	3
Optimization experiments	4
Table S1. Screening of reaction conditions for the <i>N</i> -alkylation of aromatic amines ^a	4
Table S2. Screening of reaction conditions for the methylation of aromatic amines ^a	5
Structure of the Tested Catalysts	5
Table S2: Screening of Substrates with different catalysts	6
Experiments for H_2 detection	7
General procedure for hydrogen detection at room temperature	7
General procedure for H_2 detection at 70 °C	9
General experimental procedures for the synthesis of Products 3a-3t, 5a, 7a-9a.	11
General experimental procedure for the synthesis of amine 3a - 3p.	11
General experimental procedure for the synthesis of methylamines 3q-3t	11
Experimental procedure for the synthesis of benzimidazole 7a	11
Spectral data for products 3a-3t, 5a, 7a, 9a	12
References	16
¹ H and ¹³ C NMR spectra for compounds 3a–3t and 5a , 7a-9a	17

General methods and materials

Commercially available reagents were purchased from Acros, Aldrich, Strem Chemicals, Alfa-Aesar, and TCI Europe and were used as received. (dppf) RuCl₂ AMPY was purchased from Johnson Matthey and was used as received. All reactions were monitored by thin-layer chromatography (TLC) performed on glass-backed silica gel 60 F254, 0.2 mm plates (Merck), and compounds were visualized under UV light (254 nm) or using iodine vapor. The eluents were technical grade. ¹H and ¹³C liquid NMR spectra were recorded on a Bruker Avance III HD 600 MHz NMR spectrometer and a Varian 400 and 500 MHz NMR spectrometer at 298 K. Proton chemical shifts are expressed in parts per million (ppm, δ scale) and are referred to the residual hydrogen of the solvent (CDCl₃, 7.27 ppm or DMSO 2.54 ppm) or internal tetramethylsilane (TMS). Data are represented as follows: chemical shift δ is expressed in ppm, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and/or multiple resonances, br = broad singlet, and combination of thereof), coupling constant (J) in hertz (Hz) and integration. Carbon chemical shifts are expressed in parts per million (ppm, δ scale) and referenced to the NMR solvent's carbon resonances (CDCl₃, δ 77.0 ppm or DMSO-d6 δ 39.5 ppm). Deuterated NMR solvents were obtained from Aldrich. Samples were analyzed using an Agilent 5977B MS interfaced to the GC 7890B equipped with a DB-5ms column (J & W), injector temperature at 230 °C, detector temperature at 280 °C, helium carrier gas flow rate of 1 mL/min. The GC oven temperature program was 100 °C initial temperature with a 4 min hold time and ramping at 15 °C/min to a final temperature of 270 °C with 7 min hold time. One μ L of each sample was injected in split (1:20) mode. After a solvent delay of 3 minutes, mass spectra were acquired in full scan mode using 2.28 scans/s with a 50–500 amu mass range. Retention times of different compounds were determined by injecting pure compounds under identical conditions. HRMS were recorded on LTQ Orbitrap Elite (Thermofischer) instrument (ESI). All the experiments were carried out in duplicate to ensure the reproducibility of the experimental data. Yields refer to pure, isolated materials.

Optimization experiments

Entry	Catalyst	Time (h)	Temperature	Yield of 3 ^b
1	[Os]-1	36	25 °C	-
2	[Os]-1	36	50 °C	-
3	[Os]2	36	25 °C	5%
4	[Os]-3	36	25 °C	-
5	[Os]-3	36	50 °C	-
6	[Os]-4	36	25 °C	-
7	[Os]-4	36	50 °C	-
8	[Ru]-1	36	25 °C	-
9	[Ru]-1	36	50 °C	-
10	[Ru]-2	36	25 °C	2%
11	[Ru]-2	36	50 °C	36%
12	[Ru]-7	36	25 °C	-
13	[Ru]-7	36	50 °C	-
14 ^c	[Ru]-3	48	25 °C	93%

a. Reaction conditions: anisidine (1 mmol), octanol (1 mmol), potassium *tert*-butoxide (1 mmol), catalyst (2.5 mol%), in toluene (1 mL) for the given time and given temperature. b. Determined by GC-MS analysis. c. Catalyst loading 1.5 mol%.

Table S2. Screening of reaction conditions for the methylation of aromatic amines^a

Entry	Solvent (mL)	Catalyst (Loading)	Time (h)	Temperature	Yield of 3 ^b
1	Toluene/MeOH (2/1)	[Ru]-3 (2 mol%)	48	75 °C	18%
2	Toluene/MeOH (2/1)	[Ru]-3 (2 mol%)	48	100 °C	20%
3°	Toluene/MeOH (2/1)	[Ru]-3 (2 mol%)	48	75 °C	10 %
4	Toluene/MeOH (2/1)	[Ru]-3 (4 mol%)	48	75 °C	15%
5 ^d	MeOH (2)	[Ru]-3 (2 mol%)	48	65 °C	75 %

a. Reaction conditions: anisidine (1 mmol), potassium *tert*-butoxide (1 mmol), catalyst in the given solvent for 48h at given temperature. b. Determined by GC-MS analysis. c. Potassium *tert*-butoxide (2 mmol). d. isolated yield.

Structure of the Tested Catalysts

trans-[OsCl₂(dppb)(trans-dach)] trans-[OsCl₂(dppf)(trans-dach)] trans-[OsCl₂(dppf)(en)]

Table S3: Screening of Substrates with different catalysts

Entry	Catalyst	Time (h)	Product	Yield ^b
1	[Ru]-6	12	3a	84 %
2	[Ru]-6	3	3b	94 %
3	[Ru]-6	24	3c	74 %
4	[Ru]-6	8	3f	86%
5°	[Ru]-6	3	Зј	86%
6 ^d	[Ru]-6	24	3n	90%
7 ^e	[Ru]-8	2.5	9	99%

a. Reaction conditions: amine (1 mmol), alcohol (1 mmol), potassium *tert*-butoxide (1 mmol), catalyst (2 mol%), in toluene (1 mL) for the given time at r.t. b. Isolated yield c. Determined by ¹H-NMR analysis

Experiments for H₂ detection

General procedure for hydrogen detection at room temperature

To a 15 mL Schlenck tube under N₂ atmosphere, was added aniline (0.5 mmol), alcohol (0.5 mmol), KO^rBu (0.5 mmol), **[Ru]-3** (2 mol%), and toluene (0.5 mL). Then, the tube was closed with a rubber stopper, and the reaction mixture was stirred for 8 h at room temperature, the head-gas was collected using a gas-tight syringe and analyzed using a gas chromatograph 6890N (Agilent) (GC), equipped with an HP PLOT Q capillary column and a TCD detector. Analysis conditions: inlet temperature, 180 °C; column temperature, 250 °C; gas carrier, N₂. Hydrogen was detected in traces.

Figura S1. Evolution of Hydrogen in the reaction of anisidine and benzyl alcohol at rt.

Figura S2. Evolution of Hydrogen in the reaction of anisidine and 1-octanol at rt.

Figura S3. Evolution of Hydrogen in the reaction of formation of indole from aminophenethylalcohl at rt.

General procedure for H₂ detection at 70 °C

To a 15 mL Schlenck tube under N_2 atmosphere, was added aniline (0.5 mmol), alcohol (0.5 mmol), KOtBu (0.5 mmol), [Ru]-3 (2 mol%), and toluene (0.5 mL). Then the tube was closed with a rubber stopper, and the reaction mixture was stirred for 8 h at 70 °C, the head-gas was collected using a gas-tight syringe and analyzed using a gas chromatograph 6890N (Agilent) (GC), equipped with an HP PLOT Q capillary column and a TCD detector. Analysis conditions: inlet temperature, 180 °C; column temperature, 30 °C; TCD temperature, 250 °C; gas carrier, N_2 . Hydrogen was detected in a significant amount. (6-7-fold compared to the experiments at room temperature).

Figura S4. Evolution of Hydrogen in the reaction of formation of indole from aminophenethylalcohl at 70 °C

Fig. S5. Evolution of Hydrogen in the reaction of anisidine and benzyl alcohol at 70 $^\circ\text{C}.$

General experimental procedures for the synthesis of Products **3a-3t**, **5a**, **7a-9a**.

General experimental procedure for the synthesis of amine **3a-3p**.

In a 15 mL Schlenck tube under an N₂ atmosphere, amine (1 mmol) and alcohol (1.1 mmol) were dissolved in anhydrous toluene (1.0 mL), then *t*-BuOK (1.1 mmol) and **[Ru]-3** (0.02 mmol) were added, and then the tube was closed with a rubber stopper. The reaction mixture was stirred for 24 h at rt. After that, the crude reaction mixture was extracted with ethyl acetate. The solvent was evaporated to dryness, and the corresponding amine was purified by column chromatography with silica gel (ethyl acetate/ hexane: 9/1). The yields were calculated based on isolated products.

General experimental procedure for the synthesis of methylamines 3q-3t

In a 15 mL Schlenck tube under an N_2 atmosphere, amine (1 mmol) was dissolved in methanol (2 mL), then *t*-BuOK (1.1 mmol) and **[Ru]-3** (0.02 mmol) were added, and then the vial was closed with the cap. The reaction mixture was heated at reflux and stirred for 48 h. After that, the solvent was evaporated to dryness, and the corresponding amine was purified by column chromatography with silica gel (ethyl acetate/ hexane. 9/1). The yields were calculated based on isolated products.

Experimental procedure for the synthesis of benzimidazole 7a

In a 15 mL Schlenck tube under an N_2 atmosphere, *o*-phenylenediamine (1 mmol) and benzylic alcohol (2 mmol) were dissolved in anhydrous toluene (2 mL), then *t*-BuOK (2 mmol) and **[Ru]-3** (0.02 mmol) were added, and then the vial was closed with the cap. The reaction mixture was heated at reflux and stirred for 48 h. After that, the solvent was evaporated to dryness, and the corresponding amine was purified by column chromatography with silica gel (ethyl acetate/hexane: 8/2). The yields were calculated based on isolated products.

Spectral data for products 3a-3t, 5a, 7a, 9a

4-methoxy-*N***-octylaniline (3a)** Yellow oil, 197 mg, 84% yield. ¹**H** NMR (500 MHz, CDCl₃) δ 6.78 (d, *J* = 8.9 Hz, 2H), 6.58 (d, *J* = 8.9 Hz, 2H), 3.75 (s, 3H), 3.06 (t, *J* = 7.1 Hz, 2H), 1.63 – 1.57 (m, 2H), 1.44 – 1.36 (m, 2H), 1.38 – 1.25 (m, 9H), 0.94 – 0.84 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 152.2, 143.0, 115.1, 114.2, 56.0, 45.3, 32.0, 29.8, 29.6, 29.4, 27.3, 22.8, 14.2. Spectroscopic data are in agreement with those reported earlier.¹

4-methoxy-N-(3-phenylpropyl)aniline (3b) Yellow oil, 217 mg, 90% yield ¹**H NMR**.(600 MHz, CDCl₃) δ 7.33 (t, *J* = 7.6 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 3H), 6.82 (dd, *J* = 8.6, 1.5 Hz, 2H), 6.60 (dd, *J* = 8.6, 1.5 Hz, 2H), 3.78 (s, 3H), 3.35 (bs, 1H), 3.14 (t, *J* = 7.0 Hz, 2H), 2.76 (t, *J* = 7.7 Hz, 2H), 1.97 (p, *J* = 7.3 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 152.2, 142.6, 141.8, 128.5, 128.5, 126.0, 115.0, 114.3, 55.9, 44.7, 33.5, 31.2. Spectroscopic data are in agreement with those reported earlier.^{2,3}

MeO N-(cyclohexylmethyl)-4-methoxyaniline (3c) Colorless oil, 174 mg, 74 % yield. ¹H NMR (500 MHz, CDCl₃) δ 6.81 – 6.75 (m, 2H), 6.64 – 6.55 (m, 2H), 3.75 (s, 3H), 2.92 (d, J = 6.4 Hz, 2H), 1.85 – 1.79 (m, 2H), 1.79 – 1.72 (m, 2H), 1.72 – 1.65 (m, 1H), 1.57 (ddt, J = 11.1, 7.5, 3.8 Hz, 1H), 1.30-1.16 (m, 3H), 0.98 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 151.9, 142.7, 115.1, 114.4, 56.0, 52.0, 37.7, 31.5, 26.7, 26.1. Spectroscopic data are in agreement with those reported earlier⁴

4-methoxy-N-(undec-10-en-1-yl)aniline (3d) Yellow oil, 176 mg, **95% purity** 61% yield. ¹**H NMR** (600 MHz, CDCl₃) δ 6.80 – 6.77 (m, 2H), 6.64 – 6.60 (m, 2H), 5.82 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1H), 5.00 (dq, *J* = 17.1, 1.8 Hz, 1H), 4.93 (ddt, *J* = 10.2, 2.3, 1.2 Hz, 1H), 3.75 (s, 3H), 3.06 (t, *J* = 7.2 Hz, 2H), 2.08 – 2.02 (m, 2H), 1.63 – 1.56 (m, 2H), 1.38 (p, *J* = 7.2 Hz, 4H), 1.33 – 1.25 (m, 8H). ¹³**C NMR** (151 MHz, CDCl₃) δ 152.5, 142.3, 139.3, 115.1, 114.7, 114.3, 56.0, 45.6, 33.9, 29.7, 29.6, 29. 6, 29.2, 29.1, 27.3. **HRMS (ESI)**: 276.2322 m/z calcd for: C₁₈H₃₀NO [M+H]⁺. Found 276.2319.

N-benzyl-4-methoxyaniline (3e) Colorless oil, 183 mg, 86% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.35 (m, 4H), 7.34 – 7.29 (m, 1H), 6.85 – 6.81 (m, 2H), 6.66 – 6.61 (m, 2H), 4.32 (s, 2H), 3.77 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 152.3, 142.6, 139.8, 128. 7, 127.6, 127.2, 115.01, 114.2, 55.9, 49.3. Spectroscopic data are in agreement with those reported earlier.⁵

4-methoxy-N-(4-methoxybenzyl)aniline (3f) White solid, m.p. 90-92 °C (lit.:⁶ 94 °C) 119 mg 49% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.31 − 7.26 (m, 2H), 6.87 (d, *J* = 8.7 Hz, 2H), 6.78 (d, *J* = 8.9 Hz, 2H), 6.65 (d, *J* = 8.9 Hz, 2H), 4.21 (s, 2H), 3.80 (s, 3H), 3.75 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.1,

152.8, 141.7, 131.2, 129.2, 115.1, 115.0, 114.2, 56.0, 55.4, 49.4. Spectroscopic data are in agreement with those reported earlier.⁷

N-(4-chlorobenzyl)-4-methoxyaniline (3g) Colorless oil, 150 mg, 61% yield. ¹H NMR (600 MHz, DMSO) δ 7.36 (s, 4H), 6.67 (d, J = 8.9 Hz, 2H), 6.50 (d, J = 6.8 Hz, 2H), 5.84 (s, 1H), 4.19 (s, 2H), 3.60 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 150.8, 142.6, 139.7, 130.9, 129.0, 128.1, 114.5, 113.3, 55.2, 46.5. Spectroscopic data are in agreement with those reported earlier.⁸

4-methoxy-N-pentylaniline (3h) Yellow oil, Yield: 67.5 mg, 85 % yield. ¹H NMR (500 MHz, CDCl₃) δ = 6.85 – 6.74 (m, 2H), 6.59 (dd, *J* = 6.8, 2.0 Hz, 2H), 3.76 (s, 3H), 3.31 (s, 1H), 3.07 (t, *J* = 7.2 Hz, 2H), 1.66 – 1.57 (m, 2H), 1.39 (dd, *J* = 8.9, 5.4 Hz, 4H), 0.94 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ = 151.4, 142.4, 113.5, 55.3, 44.5, 28.9, 28.9, 22.0, 13.5. Spectroscopic data are in agreement with those reported earlier.^{9–11}

N-pentylaniline (3i) Yellow oil, 116 mg, 95% purity, 67 % yield ¹H NMR (500 MHz, CDCl₃) δ 7.22 – 7.14 (m, 2H), 6.71 (dd, J = 7.8, 6.7 Hz, 1H), 6.65 – 6.59 (m, 2H), 3.60 (bs, 1H), 3.13 (t, J = 7.2 Hz, 2H), 1.65 (dd, J = 8.5, 5.8 Hz, 2H), 1.40 (dq, J = 6.5, 3.3, 2.9 Hz, 4H), 0.98 – 0.92 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.7, 129.3, 117.2, 112.8, 44.1, 29.5, 29.4, 22.6, 14.1. Spectroscopic data are in agreement with those reported earlier.¹²

4-methyl-N-pentylaniline (3j) Yellow oil, Yield: 110 mg, 62 % ¹H NMR (500 MHz, CDCl₃) δ = 7.00 (d, *J* = 8.0 Hz, 2H), 6.55 (d, *J* = 8.4 Hz, 2H), 3.44 (s, 1H), 3.09 (t, *J* = 7.2 Hz, 2H), 2.25 (s, 3H), 1.69 – 1.57 (m, 2H), 1.38 (dd, *J* = 7.1, 3.5 Hz, 4H), 0.93 (t, *J* = 7.0 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 146.5, 129.8, 126.4, 113.0, 44.5, 29.5, 29.5, 22.7, 20.5, 14.2. Spectroscopic data are in agreement with those reported earlier.⁹

4-fluoro-N-pentylaniline (3k) Yellow oil, 63 mg, 70% Yield ¹**H NMR** (500 MHz, CDCl₃) δ = 6.92 – 6.81 (m, 2H), 6.56 – 6.46 (m, 2H), 3.45 (s, 1H), 3.05 (t, *J* = 7.1 Hz, 2H), 1.75 – 1.45 (m, 2H), 1.37 (dd, *J* = 6.6, 3.2 Hz, 4H), 0.92 (dd, *J* = 9.5, 4.5 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 155.8 (d, *J* = 234.2 Hz), 145.1 (d, *J* = 1.6 Hz), 115.7 (d, *J* = 22.4 Hz), 113.6 (d, *J* = 7.4 Hz), 45.0, 29.5, 29.4, 22.6, 14.1. Spectroscopic data are in agreement with those reported earlier.¹³

3-chloro-*N***-pentylaniline (3I)** Yellow oil, 154 mg, 78% yield ¹**H** NMR (600 MHz, CDCl₃) δ 7.07 (t, J = 8.0 Hz, 1H), 6.65 (dd, J = 7.8, 1.7 Hz, 1H), 6.57 (s, 1H), 6.46 (dd, J = 8.3, 2.3 Hz, 1H), 3.69 (s, 1H), 3.08 (t, J = 7.2 Hz, 2H), 1.68 – 1.55 (m, 2H), 1.39 (p, J = 3.7 Hz, 4H), 1.00 – 0.88 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.8, 135.1, 130.2, 116.91, 112.3, 111.1, 43.9, 29.4, 29.2, 22.6, 14.1. HRMS (ESI): 198,1044 m/z calcd for C₁₁H₁₇ClN [M+H]⁺. Found 198.1036.

4-(methylthio)-*N***-pentylaniline (3m)** Brown oil, 113 mg, 54% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.22 (d, *J* = 8.6 Hz, 2H), 6.55 (d, *J* = 8.6 Hz, 2H), 3.64 (bs, 1H), 3.09 (t, *J* = 7.2 Hz, 2H), 2.41 (s, 3H), 1.61 (p, *J* = 7.3 Hz, 2H), 1.37 (tt, *J* = 6.1, 3.5 Hz, 4H), 0.92 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 147. 6, 131.8, 126.2, 123.9, 123.4, 113.4, 44.1, 29.4, 29.3, 22.6, 19.5, 14.1. HRMS (ESI): 210,1311 m/z calcd for: $C_{12}H_{20}NS$ [M+H]⁺. Found 210.1317.

4-(pentylamino)benzonitrile (3n) Yellow oil, 158 mg, 84% yield ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, *J* = 8.6 Hz, 2H), 6.53 (d, *J* = 8.6 Hz, 2H), 4.19 (bs, 1H), 3.13 (td, *J* = 7.2, 5.5 Hz, 2H), 1.64 – 1.60 (m, 2H), 1.42 – 1.33 (m, 4H), 0.99 – 0.86 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 151.6, 133.8, 120.7, 112.2, 98.5, 43.3, 29.3, 29.0, 22.5, 14.1. Spectroscopic data are in agreement with those reported earlier.¹⁴

2-methoxy-N-pentylaniline (30) Yellow oil, 67 mg, 95% purity, 33% yield. ¹H NMR (600 MHz, CDCl₃) δ 6.87 (td, *J* = 7.6, 1.4 Hz, 1H), 6.77 (dd, *J* = 7.9, 1.4 Hz, 1H), 6.65 (td, *J* = 7.7, 1.6 Hz, 1H), 6.61 (dd, *J* = 7.8, 1.5 Hz, 1H), 4.19 (bs, 1H), 3.85 (s, 3H), 3.12 (t, *J* = 7.2 Hz, 2H), 1.66 (q, *J* = 7.4 Hz, 2H), 1.45 – 1.37 (m, 4H), 0.93 (t, *J* = 7.1 Hz, 3iH). ¹³C NMR (151 MHz, CDCl₃) δ 146.9, 138., 121., 116.2, 109.9, 109.5, 55.5, 43., 29.57, 29.40, 22.7, 14.2. Spectroscopic data are in agreement with those reported earlier.¹³

N-pentylnaphthalen-1-amine (3p) Yellow oil, 124 mg, 58% ¹H NMR (600 MHz, CDCl₃) δ 7.70 (t, J = 9.0 Hz, 2H), 7.34 (qd, J = 6.9, 3.3 Hz, 2H), 7.26 (td, J = 7.9, 1.5 Hz, 1H), 7.14 (d, J = 8.2 Hz, 1H), 6.53 (d, J = 7.5 Hz, 1H), 3.18 (t, J = 7.2 Hz, 2H), 1.69 (q, J = 7.7 Hz, 2H), 1.41 – 1.31 (m, 4H), 0.86 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.7, 134.5, 128.8, 126.8, 125.8, 124.7, 123.5, 119.9, 117.3, 104.5, 44.4, 29.7, 29.3, 22.7, 14.2. Spectroscopic data are in agreement with those reported earlier.

4-methoxy-N-methylaniline (3q) Colourless oil, 103 mg, 95% purity71% yield, ¹H NMR (600 MHz, CDCl₃) δ 6.83 (d, J = 8.9 Hz, 2H), 6.61 (d, J = 8.9 Hz, 2H), 3.77 (s, 3H), 3.33 (s, 1H), 2.82 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 152.1, 143.8, 114.9, 113.7, 55.9, 31.6. Spectroscopic data are in agreement with those reported earlier.¹⁵

N-methylaniline (3r) Colorless oil, 68 mg, 64% yield, ¹H NMR (600 MHz, CDCl₃) δ 7.35 – 7.28 (m, 2H), 6.84 (q, J = 7.4 Hz, 1H), 6.71 (ddq, J = 7.1, 3.8, 1.2 Hz, 2H), 3.73 (s, 1H), 2.91 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 149.4, 129.2, 117.2, 112.4, 30.7. Spectroscopic data are in agreement with those reported earlier.¹⁶

4-fluoro-N-methylaniline (3s) Colorless oil. 106 mg, 85% yield, ¹H NMR (600 MHz, CDCl₃) δ 6.91 (t, J = 8.8 Hz, 2H), 6.57 – 6.52 (m, 2H), 2.81 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 155.9 (d, J = 234.4 Hz), 145.8 (d, J = 2.0 Hz), 115.7 (d, J = 22.4 Hz), 113.2 (d, J = 7.6 Hz), 31.4. Spectroscopic data are in agreement with those reported earlier.¹⁶

4-bromo-*N***-methylaniline (3t)** Colorless oil, 141 mg, 76% yield ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, *J* = 8.8 Hz, 2H), 6.46 (d, *J* = 8.8 Hz, 2H), 3.70 (bs, 1H), 2.79 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.4, 131.9, 114.0, 108.8, 30.7. Spectroscopic data are in agreement with those reported earlier.¹⁵

1H-indole (5a) The synthesis was performed according to the general procedure at the temperature of 70 °C. Pale yellow solid, m.p. 52-54 °C (Lit.¹⁷: 51 °C) 71 mg, 61% yield ¹H NMR (600 MHz, CDCl₃) δ 8.14 (bs, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.41 (d, *J* = 8.1 Hz, 1H), 7.23 – 7.19 (m, 2H), 7.13 (t, *J* = 7.5 Hz, 1H), 6.57 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 135.9, 128.0, 124.2, 122.1, 120.9, 119.5, 111.1, 102.8. Spectroscopic data are in agreement with those reported earlier. ¹⁸

1-benzyl-2-phenyl-1H-benzo[d]imidazole (7a) The synthesis was performed according to the general procedure at the temperature of 75 °C. Yellow oil, 176 mg, 95% purity 59% ¹H NMR (600 MHz, CDCl₃) δ 7.88 (dt, *J* = 8.1, 0.9 Hz, 1H), 7.71 – 7.67 (m, 2H), 7.50 – 7.43 (m, 3H), 7.37 – 7.28 (m, 4H), 7.25 – 7.20 (m, 2H), 7.11 (dq, *J* = 7.0, 1.0 Hz, 2H), 5.46 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 154.3, 143.3, 136.5, 136.2, 130.2, 130.1, 129.4, 129.2, 128.9, 127.9, 126.1, 123.2, 122.8, 120.1, 110. 7, 48.5. Spectroscopic data are in agreement with those reported earlier. ¹⁹

*N*¹-pentylbenzene-1,2-diamine (7a) The synthesis was performed according to the general procedure at the temperature of 75 °C. Yellow oil, 107 mg /76% purity , 43% ¹H NMR δ 6.83 (dd, *J* = 8.4, 6.8 Hz, 1H), 6.73 – 6.70 (m, 1H), 6.66 (t, *J* = 7.3 Hz, 2H), 3.31 (bs, 3H), 3.10 (t, *J* = 7.2 Hz, 2H), 1.70 – 1.63 (m, 2H), 1.41 (dq, *J* = 14.1, 7.7, 7.2 Hz, 4H), 0.93 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 138.3, 134.1, 120.9, 118.4, 116.6, 111.7, 44.4, 29.6, 29.6, 22.7, 14.3.

Quinoxaline (9a) The synthesis was performed according to the general procedure at the temperature of 90 °C. Yellow oil, 34 mg, 49% ¹H NMR (600 MHz, CDCl₃) δ 8.86 (s, 2H), 8.13 (dt, *J* = 6.5, 3.4 Hz, 2H), 7.80 (dt, *J* = 6.5, 3.4 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 145.1, 143.2, 130.2, 129.7. Spectroscopic data are in agreement with those reported earlier.²⁰

References

- Pei Shan, S.; Dang, T. T.; Seayad, A. M.; Ramalingam, B. Reusable Supported Ruthenium Catalysts for the Alkylation of Amines by Using Primary Alcohols. *ChemCatChem* 2014, 6 (3), 808–814. https://doi.org/https://doi.org/10.1002/cctc.201300971.
- (2) Garcia, P.; Lau, Y. Y.; Perry, M. R.; Schafer, L. L. Phosphoramidate Tantalum Complexes for Room-Temperature C-H Functionalization: Hydroaminoalkylation Catalysis. *Angew. Chemie Int. Ed.* **2013**, *52* (35), 9144–9148. https://doi.org/https://doi.org/10.1002/anie.201304153.
- (3) Wei, Y.; Zhao, C.; Xuan, Q.; Song, Q. An Expedient and Novel Strategy for Reductive Amination by Employing H2O as Both a Hydrogen Source and Solvent via B₂(OH)₄/H₂O Systems. *Org. Chem. Front.* 2017, *4* (12), 2291– 2295. https://doi.org/10.1039/C7QO00769H.
- (4) Kolesnikov, P. N.; Yagafarov, N. Z.; Usanov, D. L.; Maleev, V. I.; Chusov, D. Ruthenium-Catalyzed Reductive Amination without an External Hydrogen Source. *Org. Lett.* **2015**, *17* (2), 173–175. https://doi.org/10.1021/ol503595m.
- (5) Too, P. C.; Chan, G. H.; Tnay, Y. L.; Hirao, H.; Chiba, S. Hydride Reduction by a Sodium Hydride–Iodide Composite. *Angew. Chemie Int. Ed.* **2016**, *55* (11), 3719–3723. https://doi.org/https://doi.org/10.1002/anie.201600305.
- (6) Lei, Q.; Wei, Y.; Talwar, D.; Wang, C.; Xue, D.; Xiao, J. Fast Reductive Amination by Transfer Hydrogenation "on Water." *Chem.* – *A Eur. J.* **2013**, *19* (12), 4021–4029. https://doi.org/https://doi.org/10.1002/chem.201204194.
- (7) Guru, M. M.; Thorve, P. R.; Maji, B. Boron-Catalyzed N-Alkylation of Arylamines and Arylamides with Benzylic Alcohols. J. Org. Chem. **2020**, 85 (2), 806–819. https://doi.org/10.1021/acs.joc.9b02816.
- (8) Kuchuk, E.; Muratov, K.; Perekalin, D. S.; Chusov, D. Anthracene–Rhodium Complexes with Metal Coordination at the Central Ring – a New Class of Catalysts for Reductive Amination. Org. Biomol. Chem. 2019, 17 (1), 83–87. https://doi.org/10.1039/C8OB02561D.
- (9) Jiang, D.; Fu, H.; Jiang, Y.; Zhao, Y. CuBr/Rac-BINOL-Catalyzed N-Arylations of Aliphatic Amines at Room Temperature. J. Org. Chem. 2007, 72 (2), 672–674. https://doi.org/10.1021/jo062060e.
- (10) Arundhathi, R.; Kumar, D. C.; Sreedhar, B. C-N Bond Formation Catalysed by CuI Bonded to Polyaniline Nanofiber. *European J. Org. Chem.* **2010**, 2010 (19), 3621–3630. https://doi.org/10.1002/ejoc.201000149.
- (11) Neogi, S.; Naskar, D. One-Pot Reductive Mono-N-Alkylation of Aromatic Nitro Compounds Using Nitriles as Alkylating Reagents. *Synth. Commun.* **2011**, *41* (13), 1901–1915. https://doi.org/10.1080/00397911.2010.493627.
- (12) Pan, Y.; Luo, Z.; Xu, X.; Zhao, H.; Han, J.; Xu, L.; Fan, Q.; Xiao, J. Ru-Catalyzed Deoxygenative Transfer Hydrogenation of Amides to Amines with Formic Acid/Triethylamine. *Adv. Synth. Catal.* 2019, *361* (16), 3800– 3806. https://doi.org/https://doi.org/10.1002/adsc.201900406.
- (13) Yan, T.; Feringa, B. L.; Barta, K. Iron Catalysed Direct Alkylation of Amines with Alcohols. *Nat. Commun.* 2014, 5 (1), 5602. https://doi.org/10.1038/ncomms6602.
- (14) Kim, M.; Chang, S. Rhodium (NHC)-Catalyzed Amination of Aryl Bromides. *Org. Lett.* **2010**, *12* (7), 1640–1643. https://doi.org/10.1021/ol100437j.
- (15) Elangovan, S.; Neumann, J.; Sortais, J.-B.; Junge, K.; Darcel, C.; Beller, M. Efficient and Selective N-Alkylation of Amines with Alcohols Catalysed by Manganese Pincer Complexes. *Nat. Commun.* **2016**, *7*, 12641.
- (16) Yuan, M.-L.; Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Deoxygenative Hydrogenation of Amides Catalyzed by a Well-Defined Iridium Pincer Complex. *ACS Catal.* **2016**, *6* (6), 3665–3669. https://doi.org/10.1021/acscatal.6b01019.
- (17) Choi, I.; Chung, H.; Park, J. W.; Chung, Y. K. Active and Recyclable Catalytic Synthesis of Indoles by Reductive Cyclization of 2-(2-Nitroaryl)Acetonitriles in the Presence of Co–Rh Heterobimetallic Nanoparticles with Atmospheric Hydrogen under Mild Conditions. Org. Lett. 2016, 18 (21), 5508–5511. https://doi.org/10.1021/acs.orglett.6b02659.
- (18) Wendlandt, A. E.; Stahl, S. S. Bioinspired Aerobic Oxidation of Secondary Amines and Nitrogen Heterocycles with a Bifunctional Quinone Catalyst. J. Am. Chem. Soc. 2014, 136 (1), 506–512. https://doi.org/10.1021/ja411692v.
- Mondal, A.; Sharma, R.; Pal, D.; Srimani, D. Recent Progress in the Synthesis of Heterocycles through Base Metal-Catalyzed Acceptorless Dehydrogenative and Borrowing Hydrogen Approach. *European J. Org. Chem.* 2021, 2021 (26), 3690–3720. https://doi.org/10.1002/ejoc.202100517.
- (20) Mullick, K.; Biswas, S.; Angeles-Boza, A. M.; Suib, S. L. Heterogeneous Mesoporous Manganese Oxide Catalyst for Aerobic and Additive-Free Oxidative Aromatization of N-Heterocycles. *Chem. Commun.* 2017, 53 (14), 2256–2259. https://doi.org/10.1039/C6CC09095H.

¹H and ¹³C NMR spectra for compounds **3a–3t** and **5a**, **7a-9a**

Meo		∽142.58 ~141.83	128.51 128.50 126.02	<u>115.01</u> 114.35					— 33.53 — 31.23	
	eppertitional (protocolaries			sectory of the sector of the s				mutuuluumeranna		and an analysis of the state of
190 180 170 160	150	140	130 12	20 110	100 90 f1 (ppm)	80 70	60 50	40	30 20	10 0

Meo 30			— 152.28		×128.67 ×127.63 ×127.24	~ 115.01 ~ 114.20				55.88						
56																
			1													
ĸĸſĸĸţŔĸĸĸĹŶſŎŎġŎŎĬĬŎĿĹſŦŔĬŎŎĹĿŎĬŎſŎĬĸŎĿŎĸĹĿŎĬĹ	Manafara Anger	ĸĸſŊŎĬĿĸſĸĬſĸĸĹĬĸĸĹĸſĸĹĬŢſĬĬĬĬĬĬĬĸŢſĸ	us-rus-lannyanyanya	10-10-46-4 Kits of Kitkind Alb	aipy steption Weapon and	wensynaattyn	nt Millende van die de geste en de geste die d	(สุดชาวิจารีมา	Nitanéna Mapita Chaka Jantén Naner	n.u/ Revolumbilit	al an dissource of the state of	યુક્તા અંગ જ વી ¹⁹⁴ પેલી ¹ 14 ¹	จะสาขาวรุงโหงโหงไป	un an	hlaraasson (Janhani	าประ ปัญร์าปรูปใบร้างสำ มักระบ
20 210 200	190 180	170 160) 150	140	130 1	120	10 100 90 f1 (ppm)	80	70 60	- 5	0 40	30	20	10	0	-10 -2

Зр

	۲ ۲	>					ر 128.00 ر 124.23	× 122.13 × 120.87 × 119.95		— 102.79										
									1											
nan-tu-tu-tu, dahanya kawa Ang	n Levis geren de sou a de la company	ĸĸŢijŎĸĸŎŢŎŎġŎŢŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎ	under and a state of the state	angharang yan sa kupan	caterul (MANUMA, Magneyeda		คุณสมุนสารเกต กันแส		1811/1-1/19-1/19-1/19-1/19-1/19-1/19-1/1	Aphrene - Barrison - Ba	94-50-14-19-18-18-18-18-18-18-18-18-18-18-18-18-18-	WALKING MARKED AND	ngundungu (manang	Way barro wany da wafang sa sana		19. Martin Martin State	จะอาการอย่างสามารถ	litij-terfortbolgen-yterking	*****	กละอาจานกละ
	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90	80	70	60	50	40	30	20	10	0

7a

	45.14 43.23	29.69 29.69		ni 6 CDCl3				-	·3200
N N	17	\bigvee		T.				-	3000
									[.] 2800
								[2600
								-	·2400
								_	·2200
								_	[.] 2000
								_	·1800
								-	1600
								-	1400
								-	1200
								-	1000
								-	800
								-	600
								-	400
								-	200
ĸĿŗĸŔĸĦġĸĸġġŎĿŀĸĸġġſſĬĸĬġĸĿĿĿĸġġſĊĬĬŢĸĸŎĸŔĸŊŊĊĬĿĔĬŊŶĹĔġĊĸĬĊŊŀĿġŗĊĬĸġĬġġĸĸġĸſĿġĊŢŀĸġġſĊĬĿĿĬĬĔĔŦĿIJ	wayaaandii wahareeyahaa	non an	nehofeliken ander and	an na an a	nnnyðulinnaunidikannulikynnuðin	www.arnealaudurentijdiyaethpelduruh	lanungi kalandan kalandar	run alisetein teinenen volutionen aus ander and	0
								-	-200
20 210 200 190 180 170 160	150 140	130 120	110 100 f1 (ppm)	90 80	70 60	50 40 3	0 20 10	0 -10	