Supporting Information

Vitex negundo- $\mathrm{Fe}_{3} \mathrm{O}_{4}-\mathrm{CuO}$ green nanocatalyst $\left(\mathbf{V N}-\mathrm{Fe}_{3} \mathrm{O}_{4}-\mathrm{CuO}\right)$: Synthesis of the antimicrobial activity of pyrazolo[3,4-c]pyrazole derivatives via cyclization of isoniazid with pyrazole and their investigation cytotoxicity and molecular docking studies

Idhayadhulla Akbar, ${ }^{* a}$ Janani Mullaivendhan ${ }^{\text {a }}$, Anis Ahamed ${ }^{\text {b }}$ and Hossam M. Aljawdah ${ }^{\text {c }}$
${ }^{\text {a }}$ Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti-621007, Tamilnadu, India;
${ }^{\mathrm{b}}$ Department of Botany and Microbiology, College of science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
${ }^{\text {c Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh }}$ 11451, Saudi Arabia;

Correspondence: a.idhayadhulla@ gmail.com;

S. No	Contents	Page no.
$\mathbf{1}$	Experimental section	$1-7$
	Physical values, Spectral, Mass, and Analytical values	$1-6$
	Biological activity	6
	Cytotoxic activity	$6-7$
	Molecular dynamics simulations	$7-8$
$\mathbf{2}$	Results and Discussion	
	Figure S1-S24 Detailed ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound (1a-11)	$9-43$
	Molecular dynamics simulations for compound 1b and 1g	$21-42$

Experimental Section

2. Materials and Methods

2.3.1. Synthesis of (3-(4-Chlorophenyl)-4-methyl-6-phenyl pyrazolo[3,4-c]pyrazol$\mathbf{2 (1 H , 3 H , 6 H) - y l) (p y r i d i n - 4 - y l) m e t h a n o n e ~ (1 a) ~}$

Light Yellow solid; Yield: 82\%; (8.702mg; M.p. $141-143^{\circ} \mathrm{C}$); $\operatorname{IR}(\mathrm{KBr})$ v: 3323, 2974, $1655,1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR(DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right): \delta 8.36(2 \mathrm{H}, \mathrm{d}, J=6.23 \mathrm{~Hz}$, Pyridin), 7.83 (-Pyridin, 2H, d, $J=6.22 \mathrm{~Hz}$), 7.58 ($5 \mathrm{H},-$ Ar ring, $\mathrm{t}, J=6.21 \mathrm{~Hz}$), 7.30 $\left(5 \mathrm{H}, \mathrm{m},-\mathrm{Ar}\right.$ ring), $6.13(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}), 4.0(1 \mathrm{H}, \mathrm{s},-\mathrm{NH}), 1.97\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 75 \mathrm{MHz}$): $\delta 172.0$ (C=O, 1C), 149.0-105.7 (-1C, 3C), 149.7-121.7 (5C, pyridine), 142.8-123.9 (12C, -Ar ring), 68.1 (1C, -CH), 12.7 ($1 \mathrm{C},-\mathrm{CH}_{3}$); EI-MS, m/z: $381.43\left(\mathrm{M}^{+}, 26.8 \%\right)$; Anal. calcd. for $\left(\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}\right)$: C, $72.42 ; \mathrm{H}, 5.02 ; \mathrm{N}, 18.36 \%$; Found: C, 72.43; H, 5.00, N, 18.30\%.

2.4.2. (3-(4-Chlorophenyl)-4-methyl-6-phenylpyrazolo[3,4-c]pyrazol-2(1H,3H,6H)-yl)(pyridin-4-yl)methanone (1b)

Yellow solid; Yield: 81%; (11.382 mg); M.p. $167-165^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr})$ v: 3323, 2974, 1655, 1640 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR(DMSO-d ${ }_{6}, 300 \mathrm{MHz}$): $\delta 8.36$ (-Pyridin, d, $J=6.23 \mathrm{~Hz}$, 2 H), 7.83 (-Pyridin, 2H, d, $J=6.22 \mathrm{~Hz}$), 7.58 ($5 \mathrm{H},-\mathrm{Ar}$ ring, $\mathrm{t}, J=6.21 \mathrm{~Hz}$), $7.34(-\mathrm{Ar}$ ring, $4 \mathrm{H}, \mathrm{dd}, J=7.33 \mathrm{~Hz}, J=7.37 \mathrm{~Hz}), 6.23(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}), 4.0(1 \mathrm{H}, \mathrm{s},-\mathrm{NH}), 1.97(3 \mathrm{H}$, $\left.\mathrm{s},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 75 \mathrm{MHz}\right): \delta 172.0(\mathrm{C}=\mathrm{O}, 1 \mathrm{C}), 145.8$ (-C, 3C), 149.7121.7 (-pyridine, 5C), 140.8-123.9 (12C, -Ar ring), 68.1 (1C, -CH), $12.7\left(-\mathrm{CH}_{3}, 1 \mathrm{C}\right)$; EI-MS, m/z: 415.87 ($\mathrm{M}^{+}, 32.6 \%$); Anal. calcd. for $\left(\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{ClN}_{5} \mathrm{O}\right)$: C, 66.45; H, 4.33; N, 16.81\%; Found: C, 66.41; H, 4.32; N, 16.83\%.

2.4.3. (3-(4-Hydroxyphenyl)-4-methyl-6-phenylpyrazolo[3,4-c]pyrazol-2(1H,3H,6H)-

 yl)(pyridin-4-yl)methanone (1c)White solid; Yield: 69%; (8.426 mg ; M.p. $176-178^{\circ} \mathrm{C}$); $\operatorname{IR}(\mathrm{KBr}) v: 3323,2974,1655$, $1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR(DMSO-d ${ }_{6}, 300 \mathrm{MHz}$): $\delta 8.36$ (-Pyridin, $2 \mathrm{H}, \mathrm{d}, J=6.23 \mathrm{~Hz}$), 7.82 (-Pyridin, d, $J=6.22 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(2 \mathrm{H},-\mathrm{Ar}$ ring, d, $J=6.21 \mathrm{~Hz}), 6.40(2 \mathrm{H}, \mathrm{d}, J=$ $6.23 \mathrm{~Hz},-\mathrm{Ar}$ ring), $7.58(5 \mathrm{H}, \mathrm{t}, J=6.21 \mathrm{~Hz},-\mathrm{Ar}$ ring), $6.12(1 \mathrm{H},-\mathrm{CH}, \mathrm{s}), 5.35(\mathrm{~s},-$ $\mathrm{OH}, 1 \mathrm{H}), 4.0(\mathrm{~s},-\mathrm{NH}, 1 \mathrm{H}), 1.97\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}, 75 \mathrm{MHz}$) δ
172.0 ($1 \mathrm{C}, \mathrm{C}=\mathrm{O}$), 149.7-105.7 (3C, -C), 149.7-121.7 (5C, -pyridine), 156.2-115.2 (12C, -Ar ring), $68.1(-\mathrm{CH}, 1 \mathrm{C}), 12.7\left(-\mathrm{CH}_{3}, 1 \mathrm{C}\right)$; EI-MS, m/z: 397.43($\left.\mathrm{M}^{+}, 25.2 \%\right)$; Anal. calcd. for $\left(\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}\right)$: C, 69.51; H, 4.82; N, 17.62\%; Found: C, 69.57; H, 4.81; N, 17.66\%.

2.4.4. (4-methyl-3-(4-nitrophenyl)-6-phenylpyrazolo[3,4-c]pyrazol-2(1H,3H,6H)-yl)(pyridin-4-yl)methanone (1d)

Light Yellow solid; Yield: 80\%; (10.971mg; M.p. 157-159${ }^{\circ} \mathrm{C}$); IR(KBr) v: 3323, 2974, 1655, 1640 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR(DMSO-d ${ }_{6}, 300 \mathrm{MHz}$): $\delta 8.36$ (-Pyridin, 2H, d, $J=$ 6.23 Hz), 7.85 (-Pyridin, $2 \mathrm{H}, \mathrm{d}, J=6.22 \mathrm{~Hz}$), 7.34 (-Ar ring, $4 \mathrm{H}, \mathrm{dd}, J=7.33 \mathrm{~Hz}, J=$ $7.37 \mathrm{~Hz}), 7.58$ ($5 \mathrm{H}, \mathrm{t}, J=6.21 \mathrm{~Hz},-\mathrm{Ar}$ ring), $6.13(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}), 4.0(1 \mathrm{H}, \mathrm{s},-\mathrm{NH}), 1.97$ ($\mathrm{s}, 3 \mathrm{H},-\mathrm{CH}_{3}$) ; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}_{-\mathrm{d}}^{6}, 75 \mathrm{MHz}$): $\delta 172.0(\mathrm{C}=\mathrm{O}, 1 \mathrm{C}), 145.8$ (3C, -C), 149.7-121.7 (5C, -pyridine), 148.2-123.9 (12C, -Ar ring), 68.1 (1C, -CH), 12.7 (- CH_{3}, 1C); EI-MS, m/z: 426.43 (M ${ }^{+}, 25.2$ \%); Anal. calcd. for: $\left(\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{3}\right): \mathrm{C}, 64.78$; H , 4.25; N, 19.71%; Found: C, 64.76; H, 4.26; N, 19.74\%.

2.4.5. (3-(4-Methoxyphenyl)-4-methyl-6-phenylpyrazolo[3,4-c]pyrazol-2(1H,3H,6H)-yl)(pyridin-4-yl)methanone (1e)

Light Yellow solid; Yield: 79%; (10.755 mg ; M.p. $173-175^{\circ} \mathrm{C}$); mw189; $\operatorname{IR}(\mathrm{KBr})$ v: 3323, 2974, 1655, 1640 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR(DMSO- ${ }_{6}, 300 \mathrm{MHz}$): $\delta 8.36$ (-Pyridin, 2H, d, $J=6.23 \mathrm{~Hz}$), 7.83 (-Pyridin, $2 \mathrm{H}, \mathrm{d}, J=6.22 \mathrm{~Hz}$), $7.15(4 \mathrm{H},-\mathrm{Ar}$ ring, dd, $J=7.33 \mathrm{~Hz}, J$ $=7.37 \mathrm{H}), 7.58(5 \mathrm{H},-\mathrm{Ar}$ ring, $\mathrm{t}, J=6.21 \mathrm{~Hz}), 6.13(-\mathrm{CH}, \mathrm{s}, 1 \mathrm{H}), 4.0(-\mathrm{NH}, \mathrm{s}, 1 \mathrm{H})$, $3.89\left(3 \mathrm{H},-\mathrm{CH}_{3}, \mathrm{~s}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right): \delta 172.0(1 \mathrm{C}$, $\mathrm{C}=\mathrm{O}$), 145.8 (3C, -C), 149.7-121.7 (5C, -pyridine), 158.7-114.1 (12C, -Ar ring), 68.1 (1C, -CH), $55.12\left(1 \mathrm{C},-\mathrm{CH}_{3}\right), 12.7\left(1 \mathrm{C},-\mathrm{CH}_{3}\right)$; EI-MS, m/z: $411.46\left(\mathrm{M}^{+}, 27.9 \%\right)$; Anal. calcd. for $\left(\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2}\right)$: C, 70.06; H, 5.14; N, 17.02\%; Found: C, 70.04; H, 5.13; N, 17.01%.

2.4.6. (3-(4-(Dimethylamino)phenyl)-4-methyl-6-phenyl pyrazolo[3,4-c]pyrazol$\mathbf{2 (1 H , 3 H , 6 H})$-yl)(pyridin-4-yl) methanone (1f)

Yellow solid; Yield: 75%; (10.285 mg); M.p. $161-164^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) v: 3323,2971$, 1655, 1640 cm^{-1}; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}_{6}, 300 \mathrm{MHz}\right.$): $\delta 8.36$ (-Pyridin, d, $J=6.23 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.69$ (d, -Pyridin, $2 \mathrm{H}, J=6.22 \mathrm{~Hz}$), 7.0 (2 H , -Ar ring, $\mathrm{d}, J=6.24 \mathrm{~Hz}$), 7.58 (-Ar ring, $5 \mathrm{H}, \mathrm{t}, J=6.21 \mathrm{~Hz}$), $6.48(-\mathrm{Ar}$ ring, $\mathrm{d}, J=6.23 \mathrm{~Hz}, 2 \mathrm{H}), 6.13(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}), 4.0(\mathrm{~s}$, $1 \mathrm{H},-\mathrm{NH}$), $3.07\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 1.92\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right): \delta$ 191.0 ($\mathrm{C}=\mathrm{O}, 1 \mathrm{C}$), 145.8 (3C, -C), 149.7-121.7 (5C, -pyridine), 142.1-123.4 (12C, - Ar ring), 76. $1(1 \mathrm{C},-\mathrm{CH}), 41.3(2 \mathrm{C},-\mathrm{C}), 12.7\left(1 \mathrm{C},-\mathrm{CH}_{3}\right)$; EI-MS, m/z: $424.50\left(\mathrm{M}^{+}, 29.3\right.$ \%); Anal. calcd. for $\left(\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}\right)$: C, $70.73 ; \mathrm{H}, 5.70$; N, 19.80\%; Found: C, $70.72 ; \mathrm{H}$, 5.72; N, 19.81\%.

2.4.7. (3-(2,6-Dimethylhepta-1,5-dien-1-yl)-4-methyl-6-phenyl pyrazolo[3,4-c]pyrazol$\mathbf{2 (1 H , 3 H}, 6 H)$-yl)(pyridin-4-yl)methanone (1g)

Light Yellow solid; Yield: 81\%; (11.108mg); M.p. $144-146^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr})$ v: 3323, 2974, 1655, 1640 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR(DMSO-d ${ }_{6}, 300 \mathrm{MHz}$): $\delta 8.36$ (-Pyridin, d, $J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.42 (-Ar ring, d, $J=6.22 \mathrm{~Hz}, 2 \mathrm{H}$), $7.58(5 \mathrm{H}, \mathrm{t}, J=6.21 \mathrm{~Hz},-\mathrm{Ar}$ ring), 5.53 $(1 \mathrm{H}, \mathrm{d},-\mathrm{CH}), 5.37,5.23(2 \mathrm{H},-\mathrm{H}, \mathrm{s}), 4.0(1 \mathrm{H}, \mathrm{s},-\mathrm{NH}), 2.00\left(4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.97(3 \mathrm{H}, \mathrm{s},-$ $\left.\mathrm{CH}_{3}\right), 1.84\left(3 \mathrm{H},-\mathrm{CH}_{3}, \mathrm{~s}\right), 1.88\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), .1 .59\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO$\left.\mathrm{d}_{6}, 75 \mathrm{MHz}\right): \delta 172.0(\mathrm{C}=\mathrm{O}, 1 \mathrm{C}), 145.8(5 \mathrm{C},-\mathrm{C}), 149.7-121.7$ (5C, -pyridine), 139.7$123.9(6 \mathrm{C},-\mathrm{Ar}$ ring $), 123.5(1 \mathrm{C},-\mathrm{CH}), 61.1(1 \mathrm{C},-\mathrm{CH}), 39.7\left(1 \mathrm{C},-\mathrm{CH}_{2}\right), 26.4\left(-\mathrm{CH}_{2}\right.$, $1 \mathrm{C}), 116.2(-\mathrm{CH}, 1 \mathrm{C}), 26.7\left(-\mathrm{CH}_{3}, 1 \mathrm{C}\right), 18.0\left(-\mathrm{CH}_{3}, 1 \mathrm{C}\right), 16.1\left(-\mathrm{CH}_{3}, 1 \mathrm{C}\right), 12.7\left(-\mathrm{CH}_{3}\right.$, 1C); EI-MS, m/z: $427.54\left(\mathrm{M}^{+}, 28.5 \%\right)$; Anal. calcd. for $\left(\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}\right): \mathrm{C}, 73.04 ; \mathrm{H}$, 6.84; N, 16.38\%; Found: C, 73.05; H, 6.82, N, 16.82\%.

2.4.8. (3-(1H-indol-3-yl)-4-methyl-6-phenylpyrazolo[3,4-c]pyrazol-2 ($\mathbf{1 H}, \mathbf{3 H}, 6 \mathrm{H}$)-

 yl)(pyridin-4-yl)methanone (1h) 1651, $1643 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR(DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right): \delta 10.1(1 \mathrm{H}, \mathrm{s},-\mathrm{NH}), 8.36$ (d, Pyridin, $J=6.23 \mathrm{~Hz}, 2 \mathrm{H}$), 7.84 (d, $J=6.22 \mathrm{~Hz}, 2 \mathrm{H},-$ Pyridin), 7.18 (s, -CH, 1H), 7.15 (-Ar ring, $4 \mathrm{H}, \mathrm{t}, J=6.23 \mathrm{~Hz}, J=6.24 \mathrm{~Hz}$), 7.58 ($5 \mathrm{H},-\mathrm{Ar}$ ring, $\mathrm{t}, J=6.21 \mathrm{~Hz}$), 6.13 $(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}), 4.0(1 \mathrm{H}, \mathrm{s},-\mathrm{NH}), 1.97\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right): \delta$ $172.0(\mathrm{C}=\mathrm{O}, 1 \mathrm{C}), 145.8(4 \mathrm{C},-\mathrm{C}), 149.7-120.3$ (4C, -pyridine), $123.9\left(1 \mathrm{C},-\mathrm{CH}_{3}\right)$ 139.7-111.1 (12C, -Ar ring), $105.7\left(1 \mathrm{C},-\mathrm{CH}_{2}\right), 66.1(-\mathrm{CH}, 1 \mathrm{C}), 12.7\left(1 \mathrm{C},-\mathrm{CH}_{3}\right)$; EIMS, m/z: 420.47($\left.\mathrm{M}^{+}, 29.3 \%\right)$; Anal. calcd. for $\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}\right): \mathrm{C}, 71.41 ; \mathrm{H}, 4.79$; N , 19.99\%; Found: C, 71.43; H, 4.80; N, 19.97\%.

2.4.9. (3-(Furan-2-yl)-4-methyl-6-phenyl pyrazolo[3,4-c] pyrazol-2(1H,3H,6H)-yl)(pyridin-4-yl)methanone (1i)

Light Yellow solid; Yield: 74\%; (7.109mg); M.p. $166-168^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr})$ v: 3323, 2974, $1655,1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR(DMSO-d ${ }_{6}, 300 \mathrm{MHz}$): $\delta 8.36$ (-Pyridin, $\mathrm{d}, J=6.23 \mathrm{~Hz}$, $2 \mathrm{H}), 7.85(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}), 7.65(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}), 7.58(5 \mathrm{H},-\mathrm{Ar}$ ring, $\mathrm{t}, J=6.21 \mathrm{~Hz}), 6.43$ $(1 \mathrm{H},-\mathrm{CH}, \mathrm{s}), 6.23(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}), 6.13(\mathrm{CH}, 1 \mathrm{H}, \mathrm{s}), 4.0(1 \mathrm{H}, \mathrm{s},-\mathrm{NH}), 1.97\left(\mathrm{~s},-\mathrm{CH}_{3}, 3 \mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 75 \mathrm{MHz}\right): \delta 172.0(1 \mathrm{C}, \mathrm{C}=\mathrm{O}), 149.0-106.7$ (3C, -C), 152.5106.7 (4C, -furan), 149.7-121.7 (5C, -pyridine), 139.7-123.9 (6C, -Ar ring), 67.1 (-CH, 1C), $12.7\left(-\mathrm{CH}_{3}, 1 \mathrm{C}\right)$; EI-MS, m/z: $371.39\left(\mathrm{M}^{+}, 24.8 \%\right)$; Anal. calcd. for $\left(\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}\right)$: C, 67.91; H, 4.61; N, 18.86\%; Found: C, 67.93; H, 4.63; N, 18.85\%.

2.4.10. (4-methyl-6-phenyl-3-(pyridin-2-yl)pyrazolo[3,4-c]pyrazol-2(1H,3H,6H)-yl)(pyridin-4-yl)methanone (1j)

Yellow solid; Yield: 81%; (8.675 mg); M.p. $157-159^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr})$ v: $3323,2974,1655$, $1640 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR(DMSO-d ${ }_{6}, 300 \mathrm{MHz}$): $\delta 8.36$ (-Pyridin, $\mathrm{d}, J=6.23 \mathrm{~Hz}, 2 \mathrm{H}$), 7.42 $(2 \mathrm{H},-$ Pyridin, d, $J=6.22 \mathrm{~Hz}), 8.44(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}), 7.34(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}), 7.58(5 \mathrm{H}, \mathrm{t}, J=$ $6.21 \mathrm{~Hz},-$ Ar ring $), 6.13(1 \mathrm{H}, \mathrm{CH}, \mathrm{s}), 4.0(1 \mathrm{H},-\mathrm{NH}, \mathrm{s}), 1.93\left(-\mathrm{CH}_{3}, \mathrm{~s}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 75 \mathrm{MHz}$): $\delta 172.0(\mathrm{C}=\mathrm{O}, 1 \mathrm{C})$, 145.8 ($-\mathrm{CH}, 3 \mathrm{C}$), 158.7-120.7 (10C, pyridine), 139.7-123.9 (6C, -Ar ring), 68.1 (-CH, 1C), 12.7 ($1 \mathrm{C},-\mathrm{CH}_{3}$); EI-MS, m/z: $382.42\left(\mathrm{M}^{+}, 24.0 \%\right)$; Anal. calcd. for $\left(\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}\right)$: C, 69.10; H, 4.74; N, 21.98\%; Found: C, 69.12; H, 4.73; N, 21.97\%.

2.4.11. (4-Methyl-6-phenyl-3-(thiazol-5-yl)pyrazolo[3,4-c]pyrazol-2(1H,3H,6H)-yl)(pyridin-4-yl)methanone (1k)

Light Yellow solid; Yield: 82\%; (9.277mg); M.p. $150-153^{\circ} \mathrm{C}$; IR(KBr) v: 3323, 2974, 1655, 1640 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR(DMSO-d ${ }_{6}, 300 \mathrm{MHz}$): $\delta 8.36$ (-Pyridin, $2 \mathrm{H}, \mathrm{d}, J=6.23$ $\mathrm{Hz}), 8.82(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}), 7.85(2 \mathrm{H}, \mathrm{d}, J=6.22 \mathrm{~Hz},-$ Pyridin), 7.58 ($5 \mathrm{H},-\mathrm{Ar}$ ring, $\mathrm{t}, J=$ $6.21 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{s},-\mathrm{CH}), 6.13(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}), 4.0(1 \mathrm{H}, \mathrm{s},-\mathrm{NH}), 1.97\left(3 \mathrm{H},-\mathrm{CH}_{3}, \mathrm{~s}\right)$; ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right): \delta 172.0(1 \mathrm{C}, \mathrm{C}=\mathrm{O}), 145.8(3 \mathrm{C},-\mathrm{C}), 153.7(1 \mathrm{C},-\mathrm{CH})$, 141.8 (1C, -CH), 149.7-121.7 (5C, -pyridine), 139.7-123.4 (6C, -Ar ring), 133.3 (1C, $\mathrm{CH}), 66.1(1 \mathrm{C},-\mathrm{CH}), 12.6\left(1 \mathrm{C},-\mathrm{CH}_{3}\right)$; EI-MS, m/z: $388.45\left(\mathrm{M}^{+}, 24.7 \%\right)$; Anal. calcd.
for ($\left.\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{OS}\right)$: C, 61.82; H, 4.15; N, 21.63; S, 8.25\%; Found: C, 61.83; H, 4.14; N, 21.61; S, 8.24\%.

2.4.12.(3-(Benzo[d][1,3]dioxol-5-yl)-4-methyl-6-phenylpyrazolo[3,4-c]pyrazol-2(1H,3H,6H)-yl)(pyridin-4-yl)methanone (11)

Yellow solid; Yield: 83% (11.382mg); M.p. $171-172^{\circ} \mathrm{C} ; \operatorname{IR}(\mathrm{KBr}) v: 3323,2974,1655$, $1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR(DMSO-d ${ }_{6}, 300 \mathrm{MHz}$): $\delta: \delta 8.36$ (-Pyridin, $2 \mathrm{H}, \mathrm{d}, J=6.23 \mathrm{~Hz}$), 7.42 (2 H , -Pyridin, d, $J=6.22 \mathrm{~Hz}$), 6.73 (dd, $J=7.33 \mathrm{~Hz}, J=7.37 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{Ar}$ ring), $7.58(5 \mathrm{H}, \mathrm{t}, J=6.21 \mathrm{~Hz},-\mathrm{Ar}$ ring $), 6.16(\mathrm{~s},-\mathrm{CH}, 1 \mathrm{H}), 6.03\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}\right), 4.0(1 \mathrm{H},-$ $\mathrm{NH}, \mathrm{s}), 1.97\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right): \delta 172.0(\mathrm{C}=\mathrm{O}, 1 \mathrm{C}), 145.8$ (3C, -C), 149.7-121.7 (5C, -pyridine), 148.6-112.0 (12C, -Ar ring), 101.2 ($1 \mathrm{C},-\mathrm{CH}_{2}$), $68.4(-\mathrm{CH}, 1 \mathrm{C}), 12.7\left(1 \mathrm{C},-\mathrm{CH}_{3}\right)$; EI-MS, m/z: $425.44\left(\mathrm{M}^{+}, 27.9 \%\right)$; Anal. calcd. for $\left(\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{3}\right)$: C, $67.72 ; \mathrm{H}, 4.50 ; \mathrm{N}, 16.46 \%$; Found: C, $67.75 ; \mathrm{H}, 4.52 ; \mathrm{N}, 16.44 \%$.

Biological activity

Antibacterial activity

Additionally, six species of clinical bacterial isolates and two species of yeast cells were obtained from various clinical laboratories. To prepare fresh overnight bacterial cultures, a loop was used to transfer inoculate from stock cultures to test tubes containing nutrient broth that had been sterilized at $121^{\circ} \mathrm{C}$ for 20 minutes. All bacterial strains were maintained on nutrient agar slants (Hi-Media) at $37^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}$. Candida spp. was propagated on Sabouraud Dextrose agar slants (Hi-Media).

Cytotoxic activity

The synthesized compounds were screened for cytotoxicity activity against MCF-7 cell line and normal Vero cell line cell lines. All compounds (1a-l) was significantly low active compared with other compounds and standard doxorubicin $\left(\mathrm{LC}_{50}=21.05 \pm 0.82 \mu \mathrm{~g} / \mathrm{mL}\right)$. As a result, both cell lines were exposed to cytotoxicity of compound 1c, which was found to be extremely active against antioxidant activities.

Three cell lines were treated with these compounds at one primary cytotoxic assay dose of $100 \mu \mathrm{M}$ for 48 h (MTT anticancer assay). Doxorubicin was used as a standard.

In the current protocol, all cell lines were pre-incubated on a microtiter plate. The results of each test were reported as the growth percentage of treated cells compared to untreated control cells.

Compounds reducing the growth of any one of the cell lines to approximately 32% or less were described as having cytotoxic activity. A 0.1 mL aliquot of the cell suspension $\left(5 \times 10^{6}\right.$ cells $/ 100 \mu \mathrm{~L}$) and 0.1 mL of the test solution (6.25-100 $\mu \mathrm{g}$ in 1% DMSO, with the final DMSO concentration in media less than 1%) were added to the wells, with the plates kept in an incubator ($5 \% \mathrm{CO}_{2}$) at $37{ }^{\circ} \mathrm{C}$ for 72 h . The blank sample contained only the cell suspension, and the control wells contained 1% DMSO and the cell suspension. After 72 h , $20 \mu \mathrm{~L}$ of MTT was added, and the plates were kept in the CO_{2} incubator for 2 h , followed by the addition of propanol $(100 \mu \mathrm{~L})$. The plates were covered with aluminum foil to protect them from light and subsequently agitated in a rotary shaker for $10-20 \mathrm{~min}$. Afterwards, the 27-well plates were processed on an ELISA reader to obtain absorption data at 562 nm .

Molecular dynamics simulations

Molecular dynamics simulation was carried out using Desmond and Schrödinger software to explore the stability of ligand $\mathbf{1 b}$ and $\mathbf{1 g}$ docked complexes with proteins 1AI9 and 1AJ0. The ligand topology was generated by the PRODRG server and combined with the protein topology using the GROMOS 43a1 force field and a solvation method involving a single point charge (SPC) water model. The system was framed with a cubic box at a distance of 2 nm from the box to the protein surface. The necessary ions were added to neutralise the system, and the docked complex energy was minimised using the steepest descent algorithm. The LINCS algorithm was used to constrain the bond lengths and electrostatics computed using the PME method. The NVT and NPT ensembles were used to equilibrate the systems for each 100 ps , with a reference temperature of 300 K , using the V-rescale thermostat. The production MD run was conducted for 10 ns with a time step of 2 fs , and the docked complex structure coordinates were saved every 10 ps for further analysis. The results were analysed using RMSD, RMSF, gyration, and hydrogen bond plots, and Xmgrace software was used to plot the graphs.

RMSD analysis

The Root Mean Square Deviation (RMSD) values indicate the stability of complex structures. Analysing the RMSD plot of complex 1AI9 with 1b, it was observed that the complex was stable between 20 and 40 ns and $40-50 \mathrm{~ns}$, as the peak fluctuation of the $\mathrm{C} \alpha$ backbone of the protein and heavy atoms of the ligand were within the range shown in Fig. 9(a). On the other hand, analysis of the complex structure of 1AJ0 with $\mathbf{1 g}$ revealed that the $\mathrm{C} \alpha$ backbone atoms and heavy atoms of the ligand fluctuated, as shown in Fig. 9(b), which indicates that the complex was not stable. Therefore, RMSD study of both complexes, 1AI9 with $\mathbf{1 b}$ and 1AJ0 with $\mathbf{1 g}$, provided insights into their stability.

RMSF analysis

Root Mean Square Fluctuation (RMSF) analysis was used to evaluate changes in the protein chain during the simulation. No fluctuations were observed in the amino acid residues, except for the N - and C -terminal residues. All residues were within an unacceptable range (Fig. 10(a-b)).

Based on this MD simulation analysis, compound ligands 1 b and 1 g were stable and exhibited good interactions with important protein residues (Fig. 11(a-b)-12(a-b)). Therefore, these compounds may be effective inhibitors of the 1AI9 and 1AJ0 proteins.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compounds (1a-11)

Figure S1. ${ }^{1}$ H NMR spectrum of the compound 1a

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of the compound 1a

Figure S3. ${ }^{1}$ H NMR spectrum of the compound 1b

Figure \mathbf{S} 4. ${ }^{13} \mathrm{C}$ NMR spectrum of the compound $\mathbf{1 b}$

Figure S5. ${ }^{1}$ H NMR spectrum of the compound 1 c

Figure S7. ${ }^{1}$ H NMR spectrum of the compound 1d

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of the compound $1 \mathbf{d}$

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of the compound $\mathbf{1 e}$

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum of the compound 1 e

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of the compound $\mathbf{1 f}$

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum of the compound $1 f$

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of the compound $\mathbf{1 g}$

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum of the compound $\mathbf{1 g}$

Figure S15. ${ }^{1}$ H NMR spectrum of the compound $\mathbf{1 h}$

Figure S16. ${ }^{13}$ C NMR spectrum of the compound $\mathbf{1 h}$

Figure S17. ${ }^{1}$ H NMR spectrum of the compound $\mathbf{1 i}$

Figure S18. ${ }^{13} \mathrm{C}$ NMR spectrum of the compound $\mathbf{1 i}$

Figure S19. ${ }^{1}$ H NMR spectrum of the compound $\mathbf{1 j}$

Figure S20. ${ }^{13} \mathrm{C}$ NMR spectrum of the compound $\mathbf{1 j}$

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of the compound $\mathbf{1 k}$

Figure S22. ${ }^{13} \mathrm{C}$ NMR spectrum of the compound $\mathbf{1 k}$

Figure S23. ${ }^{1}$ H NMR spectrum of the compound $\mathbf{1 1}$

Figure S24. ${ }^{13} \mathrm{C}$ NMR spectrum of the compound $\mathbf{1 I}$

SCHRÖDINGER.

Simulation Interactions Diagram Report

Simulation Detalls

Jobname: desmond_md_job_1
Entry title: Full System

| CPU\# | Job Type | Ensemble | Temp.[K] | Sim. Time [ns] | \#Atoms | \# Waters | Charge |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | mosim | NPT | 300.0 | 50.096 | 16203 | 4727 | 0 |

Proteln Information

Llgand information

Counter Ion/Salt Information

Type	Num.	Concentration [mM]	Total Charge
Ca	19	73.081	-19
Na	13	50.003	$\mathbf{+ 1 3}$

SCHRODINGER.

Protein-Ligand RMSD

The Root Mean Square Deviation (RMSD) Is used to measure the average change in dlsplacement of a selection of atoms for a particular frame with respect to a reference frame. It is calculated for all frames in the trajectory. The RMSD for frame x ls:

$$
\overrightarrow{R V} S S_{1}=\sqrt{\left.N_{i=1}^{N} \sum_{i=1}^{N}\left(r\left(f_{i}\right)\right)-r\left(t_{m}\right)\right)^{2}}
$$

where N is the number of atoms in the atom selection; t is the reference time, (typically the first frame is used as the reference and it is regarded as time $t=0$); afd r 'is the position of the selected atoms in frame x atter superimposing on the reference frame, where frame x is recorded at time t_{X}. The procedure is repeated for every frame in the simulation trajectory.

Proteln RMSD: The above plot shows the RMSD evolution of a protein (left Y-axis). All proteln frames are first algned on the reference frame backbone, and then the RMSD Is calculated based on the atom selection. Monitoring the RMSD of the protein can give insights into its structural conformation throughout the simulation. RMSD analysis can Indlicate ir the simulation has equillbrated - Its fluctuations towards the end of the simulation are around some thermal average structure. Changes of the order of $1-3 \mathrm{~A}$ are perfectly acceptable for small, globular protelns. Changes much larger than that, however, Indlicate that the proteln is undergoing a large conformational change during the simulation. It is also important that your simulation converges - the RMSD values stabilize around a fixed value. If the RMSD of the proteln is still increasing or decreasing on average at the end of the simulation, then your system has not equilibrated, and your sImulation may not be long enough for rigorous analysis.

Lland RMSD: Llgand RMSD (right Y-axis) Indicates how stable the ligand is with respect to the proteln and its binding pocket. In the above plot, 'LIg nit Prot' shows the RMSD of a llgand when the proteln-1lgand complex is first allgned on the protein backbone of the reference and then the RMSD of the ligand heavy atoms is measured. If the values observed are signilicantiy larger than the RMSD of the protein, then it is illely that the ligand has difused away from its inittal binding site.

SCHRÖDINGER.

Protein RMSF

$\mathrm{C} \alpha$

The Root Mean Square Fluctuation (RMSF) is useful for characterizing local changes along the proteln chalin. The RMSF for resldue / 1 s :

$$
\text { RMSF }=\sqrt{\frac{1}{T} \sum_{r=1}^{\prime}<\left(r_{1}(m)-r\left(t_{w}\right)\right)^{2}}
$$

where T is the trajectory time over which the RMSF is calculated, t, is the reference time, r_{t} is the position of residue l, r ' s the position of atoms in residue I after superposition off the reference, and the angle brackets Indicate that the average of the square dilstance is taken over the selection of atoms in the resldue.

On thls plot, peaks indicate areas of the proteln that fluctuate the most during the simulation. Typlcally you will observe that the talls (N - and C -terminal) fluctuate more than any other part of the proteln. Secondary structure elements like alpha hellces and beta strands are usually more rigld than the unstructured part of the proteln, and thus fuctuate less than the loop reglons.

SCHRÖDINGER.

Protein Secondary Structure

Proteln secondary structure elements (SSE) Ilke alpha-hellces and beta-btrands are montiored throughout the simulation. The piot above reports SSE dilstitbution by residue index throughout the proteln structure. The plot below summarizes the SSE compostion for each trajectory frame over the course of the simulation, and the plot at the bottom monitors each residue and lis SSE asslanment over time.

SCHRÖDINGER.

Ligand RMSF

The Ligand Root Mean Square Fluctuation (L-RMSF) is useful for characterizing changes in the ligand atom positions. The RMSF for atom / Is:

$$
\text { RMSF } \left.-\} \left._{1}^{\frac{1}{7}} \sum_{1-1}^{7}\left(r_{i}^{\prime}(t)\right)-r_{i}\left(t_{n}\right) \right\rvert\,\right)^{2}
$$

where T is the trajectory time over which the RMSF is calculated, t, is the reference time (usually for the first frame, and is regarded as the zero of time); r is the position of atorfifin the reference at time $t_{\text {rer }}$ and r^{\prime} is the position of atom / at time t atter superposition on the reference frame.

Ligand RMSF shows the ligand's fluctuations broken down by atom, corresponding to the 2D structure in the top panel. The ligand RMSF may glve you Insights on how llgand fragments interact with the protein and their entropic role in the binding event. In the bottom panel, the 'Fit Ligand on Proteln' line shows the ligand fuctuations, with respect to the proteln. The proteln-Igand complex is first alligned on the proteln backbone and then the ligand RMSF is measured on the ligand heavy atoms.

Protein-Ligand Contacts

I H-bonds $\begin{aligned} & \text { Hydrophobic ■ lonic } \quad \text { Water bridges } \\ & \text {. }\end{aligned}$
Proteln Interactions with the Igand can be monitored throughout the simulation. These interactions can be categorized by type and summarized, as shown in the plot above. Proteln-ligand interactions (or 'contacts') are categorized into four types: Hydrogen Bonds, Hydrophoblc, lonic and Water Bridges. Each Interaction type contalns more specinc subtypes, which can be explored through the 'SImulation interactions Dlagram' panel. The stacked bar charts are normallzed over the course of the trajectory: for example, a value of 0.7 suggests that 70% of the simulation time the specific interaction is malntalned. Values over 1.0 are possible as some proteln resldue may make muitiple contacts of same subtype with the Ilgand.

Hydrogen Bonds: (H-bonds) play a significant role in ligand binding. Consideration of thydrogen-bonding properfes in drug deskn 15 important because of thelr strong infuence on drug specilicty, metabolzation and adsorpilon. Hydrogen bonds between a profeln and a ligand can be further broken down Into four subtypes: backbone acceptor, backibone donor, slde-chaln acceptor, slde-chaln donor.
The curent geomeitic citteria for protelin-ligand H -bond isc distance of 2.5 A between the donor and acceptor atoms (D-H-A) a donor angle of 2120° between the donor-hydrogen-acceptor atoms (D-H-A); and an acceptor angle of 200° between the hydrogen-acceptor-bonded__atom atoms ($\mathrm{H}-\mathrm{A}-\mathrm{X}$).
Hydrophotic contacts, fall into tiree subtypes: x-Cation; $x-x$; and Other, non-spectic intercitions. Generally these type of interacilions Involve a hydrophoblc amino acid and an aromatic or allphatic group on the ligand, but we have extended tris category to also incude x-Cation interactions.
The current geometric citterla for hydrophobic interactions is as follows: x-Cation - Avomatic and charged groups within 4.5A; $\pi-\pi$-Two aromatic groups stacked face-to-face or face-to-edge; Other - A non-spectic hydrophobic sidectialn wthin 3.6 A of a llgand's aromatic or allphatic carbons.
lonic interactions: or polar interacilons, are between two oppositely charged atoms that are within 3.7 A of each other and do not Involve a hydrogen bond. We also montbr Protelin-Meta-Hgand interadions, wilch are deffned by a metal lon coordinated within 3.4 A of protelin's and ligands heavy atoms (except carbon). All lonic interactions are broken down Into two suttypes: those mediated by a proteli backbone or side chalns.

Water Bridgea are hydrogen-bonded protein-ligand interactons mediated by a water molecule. The hydrogen-bond geamety is silgitiy relaxed foom the standard H -bond defilition.
The current geometric citterla for a protell-water or water-llgand H-bond are: a distance of 28 A between the donor and acceptor atoms (D-H \cdots A); a danor angle of 2110° between the donor-fydrogen-acceptor atoms (D-H \cdots. A) and an acceptor angle of 290° beween the hydrogen-acceptor-bonded_ atom atoms ($\mathrm{H} \cdot \mathrm{A}-\mathrm{X}$).

SCHRÖDINGER.

Protein-Ligand Contacts (cont.)

A timeline representation of the interactions and contacts (H-bonds, Hydrophoblc, Ionic, Water bridges) summarized in the previous page. The top panel shows the total number of specilic contacts the proteln makes with the llgand over the course of the trajectory. The bottom panel shows which resldues interact with the ligand in each trajectory trame. Some residues make more than one specific contact with the ligand, which is represented by a darker shade of orange, according to the scale to the right of the plot.

SCHRÖDINGER.

Ligand-Protein Contacts

Hydrophobic \because Pi-Pi stacking Solvent exposure
A schematic of detalled ligand atom interactions with the protein residues. Interactions that occur more than 30.0% of the simulation time in the selected tralectory (0.00 through 50.05 nsec), are shown.
Note: it is possible to have interactions with $>100 \%$ as some residues may have multiple interactions of a single type with the same llgand atom. For example, the ARG slde chaln has four H-bond donors that can all hydrogen-bond to a single H -bond acceptor.

SCIHRUDIINGER.

Ligand Torsion Profile

90^{*}

000

The llgand torsions plot summarizes the conformational evolution of every rotatable bond (RB) In the ligand throughout the simulation trajectory (0.00 through 50.05 nsec). The top panel shows the 2 d schematic of a llgand with color-coded rotatable bonds. Each rotatable bond forsion ls accompanled by a dial plot and bar plots of the same color.

Dial (or radlal) plots describe the conformation of the torsion throughout the course of the simulation. The beginning of the simulation is in the center of the radial plot and the time evolution is plotted radlally outwards.

The bar plots summarize the data on the dial plots, by showing the probablity density of the torsion. If torsional potential Information Is avallable, the plot also shows the potential of the rotatable bond (by summing the potentlal of the related torslons). The values of the potential are on the left Y-axis of the chart, and are expressed in $\mathrm{kcaV} / \mathrm{mol}$. Looking at the histogram and torsion potential relationshlips may give Insights into the conformational straln the llgand undergoes to maintaln a proteln-bound conformation.

SCHRÖDINGER.

Ligand Properties

Llgand RMSD: Root mean square deviation of a ligand with respect to the reference conformation (typlcally the first frame is used as the reference and it is regarded as time $t=0$).

Radlus of Gyration (rGyr): Measures the 'extendedness' of a ligand, and ls equivalent to its principal moment of Inertia.

Intramolecular Hydrogen Bonds (IntraHB): Number of Internal hydrogen bonds (HB) within a ligand molecule.
Molecular Surface Area (MolSA): Molecular surface calculation with $1.4 \AA$ probe radlus. Thls value is equivalent to a van der Waals surface area.

Solvent Accessible Surface Area_(SASA): Surface area of a molecule accessible by a water molecule.
Polar Surface Area (PSA): Solvent accesslble surface area In a molecule contributed only by oxygen and nitrogen atoms.

Molecular dynamics simulations for compound 1 g

SCHRÖDINGER.

Simulation Interactions Diagram Report

SImulation Detalls

Jobname: desmond_md_job_1
Entry title: Full System

CPU\#	Job Type	Ensemble	Temp. [K]	Sim. Time [ns]	\# Atoms	\# Waters	Charge
$\mathbf{1}$	madsim	NPT	300.0	50.098	16064	4755	0

Proteln_Information

Tot. Resldues	Prot. Chain(s) Res. In Chain(s)	\# Atoms	\# Heavy Atoms	Charge	
$\mathbf{1 1 2}$	' \mathbf{A} '	$\mathbf{1 1 2}$	$\mathbf{1 7 0 9}$	$\mathbf{8 3 4}$	$\mathbf{- 3}$

Llgand information

SMILES	CC(C)-CCClC(C)-C	H] $1 \mathrm{~N}(\mathrm{C}(-\mathrm{O}) \mathrm{c} 2 \mathrm{ccncc} 2) \mathrm{Nc}(\mathrm{c} 13) \mathrm{n}(\mathrm{nc33C})-$-4cccoc4
PDB Name	UNK	
Num. of Atoms	61 (total) 32 (neawy)	0
Atomic Mass	427.554 au	N
Charge	0	N
Mol. Formula	C26H29N5O	
Num. of Fragments	4	
Num. of Rot. Bands	7	\geqslant

Counter Ion/Salt Information

Type	Num.	Concentration $[\mathrm{mM}]$	Total Charge
Na	16	$\mathbf{6 1 . 1 8 0}$	$\mathbf{+ 1 6}$
Cl	13	49.708	-13

SCHRÖDINGER.

Protein-Ligand RMSD

The Root Mean Square Devlation (RMSD) is used to measure the average change in displacement of a selection of atoms for a particular frame with respect to a reference frame. It is calculated for all frames in the trajectory. The RMSD for frame x Is:

$$
\overrightarrow{R N S O}=\sqrt{\left.\frac{1}{N} \sum_{i=1}^{N}(r(i,))-r\left(f_{n}\right)\right)^{2}}
$$

where N is the number of atoms in the atom selection; t is the reference time, (typlcally the first frame is used as the reference and it is regarded as time $t=0$); afid r^{\prime} is the position of the selected atoms in frame x after superimposing on the reference frame, where frame x is recorded at time t_{x}. The procedure is repeated for every frame in the simulation trajectory.

Protein RMSD: The above plot shows the RMSD evolution of a proteln (left Y -axis). All proteln frames are first aligned on the reference frame backbone, and then the RMSD Is calculated based on the atom selection. Monitoring the RMSD of the protein can glve insights into its structural conformation throughout the simulation. RMSD analysis can Indicate ir the simulation has equillibrated - Its fluctuations towards the end of the sImulation are around some thermal average structure. Changes of the order of 1-3 A are perfectly acceptable for small, globular protelns. Changes much larger than that, however, Indlcate that the proteln is undergoing a large conformational change during the simulation. It is also important that your simulation converges - the RMSD values stabilize around a fixed value. If the RMSD of the proteln is still increasing or decreasing on average at the end of the simulation, then your system has not equillibrated, and your simulation may not be long enough for rigorous analysis.

Ligand RMSD: Llgand RMSD (right Y-axis) Indicates how stable the ligand is with respect to the proteln and its binding pocket. In the above plot, 'Lig nit Prot' shows the RMSD of a llgand when the proteln-ligand complex is first allgned on the protein backbone of the reference and then the RMSD of the ligand heavy atoms is measured. If the values observed are signilicantly larger than the RMSD of the protein, then it is likely that the llgand has diffused away from its initial binding site.

SCHRÖDINGER.

Protein RMSF

The Root Mean Square Fluctuation (RMSF) is useful for characterizing local changes along the proteln chain. The RMSF for resldue / Is :

$$
\text { RMSF }_{i}=\sqrt{\frac{1}{T} \sum_{r=1}^{\prime} \therefore\left(r_{i}^{\prime}(\mathrm{m})-r\left(t_{w^{\prime}}\right)\right)^{2}}
$$

where T is the trajectory time over which the RMSF is calculated, t is the reference time, r_{t} is the position of reskdue l, r ' Is the position of atoms in residue I after superposition off the reference, and the angle brackets Indicate that the average of the square dilstance is taken over the selection of atoms in the resldue.

On thls plot, peaks indicate areas of the protein that fluctuate the most during the simulation. Typlcally you will observe that the talls (N - and C -terminal) fluctuate more than any other part of the proteln. Secondary structure elements like alpha helloes and beta strands are usually more rigld than the unstructured part of the proteln, and thus fuctuate less than the loop reglons.

SCHRÖDINGER.

Protein Secondary Structure

Proteln secondary structure elements (SSE) like alpha-hellces and beta-btrands are monitored throughout the simulation. The piot above reports SSE distribution by residue index throughout the proteln structure. The plot below summarizes the SSE composition for each trajectory frame over the course of the simulation, and the plot at the bottom monitors each resldue and its SSE asslqnment over time.

SCHRÖDINGER.

Ligand RMSF

The LIgand Root Mean Square Fluctuation (L-RMSF) is useful for characterizing changes in the ligand atom positions. The RMSF for atom / ls :

$$
R M S F_{1}-\sqrt{\frac{1}{3} \sum_{1-1}^{7}\left(r^{\prime}\langle t i)-r_{i}\left(t_{n}\right)\right)^{2}}
$$

where T is the trajectory time over which the RMSF is calculated, t, is the reference time (usually for the first frame, and is regarded as the zero of time); r is the position of atorfif in the reference at time $t_{\text {rer }}$ and r^{\prime} is the position of atom / at time t after superposition on the reference frame.

Llgand RMSF shows the Ilgand's fluctuations broken down by atom, corresponding to the 2D structure in the top panel. The IIgand RMSF may glve you insights on how ligand fragments interact with the protein and their entropic role in the binding event. In the bottom panel, the 'Fit Ligand on Proteln' line shows the llgand fuctuations, with respect to the proteln. The protein-Ilgand complex is first allgned on the proteln backbone and then the ligand RMSF is measured on the ligand heavy atoms.

Protein-Ligand Contacts

H-bonds \quad Hydrophobic \square lonic \square Water bridges
Protein Interactions with the Igand can be monitored throughout the simulation. These interactions can be categorized by type and summarized, as shown in the plot above. Proteln-llgand interactions (or 'contacts") are categorized into four types: Hydrogen Bonds, Hydrophoblc, lonic and Water Bridges. Each Interaction type contains more specinic subtypes, which can be explored through the 'Simulation Interactions Dlagram panel. The stacked bar charts are normallzed over the course of the trajectory: for example, a value of 0.7 suggests that 70% of the simulation time the specific interaction is malntained. Values over 1.0 are possible as some protein residue may make multiple contacts of same subtype with the Igand.

Hydrogen Bonds: (H-bonds) play a significant role in ligand binding. Consideration of hydrogen-bonding propertles in drug design is important because of thelr strong influence on drug specificty, metabolzation and adsorption. Hydrogen bonds between a proteln and a ligand can be further broken down into four subtypes: backbone acceptor, backbone donor, side-chain acceptor, slde-chalin donor.
The current geometric citterla for proteli-llgand H -bond ls : distance of 2.5 A between the donor and acceptor atoms (D-H-A); a donor angle of 2120° between the donor-hydrogen-acceptor atoms ($\mathrm{D}-\mathrm{H}-\mathrm{A}$); and an acceptor angle of 2.90" between the hydrogen-acceptor-bonded_atom atoms ($\mathrm{H}-\mathrm{A}-\mathrm{X}$).

Hydrophoblic contacts: fall Into three subtypes: x-Calion; $x-x$; and Other, non-specinc interactions. Generally these type of Interactions involve a hydrophobic amino acid and an aromatic or allphatic group on the llgand, but we have extended this category to also include x-Cation interactions.
The current geometric criterta for hydrophobic interactions is as follows: x-Cation - Avomatic and charged groups within $4.5 A ; \pi-\pi$ - Two aromatic groups stacked face-to-face or face-to-edge; Other - A non-specinic hydrophobic sldechain within 3.6 A of a ligand's aromatic or allphatic carbons.
Ionic interactions: or polar interactions, are between two oppositely charged atoms that are within $3.7 \AA$ of each other and do not Involve a hydrogen bond. We also monitor Proteln-Metar-Ugand interactions, which are defined by a metal Ion coordinated within 3.4 A of proteln's and ligand's heavy atoms (except carbon). All lonic interactons are broken down Into two subtypes: those mediated by a proteln backbone or side chains.

Water Bridges: are hydrogen-bonded proteln-ligand interactons medated by a water molecule. The hydrogen-bond geomety is silghtly relaxed from the standard H-bond definition.
The current geometric cinterta for a proteln-water or water-llgand H-bond are: a distance of 28 A between the donor and acceptor atoms ($\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$); a danor angle of 2110° between the donor-hydrogen-acceptor atoms ($\mathrm{D}-\mathrm{H} \cdot \cdots \mathrm{A}$) and an acceptor angle of 290° beween the hydrogen-acceptor-bonded_atom atoms ($\mathrm{H} \cdots \mathrm{A}-\mathrm{X}$).

SCHRÖDINGER.

Protein-Ligand Contacts (cont.)

A timelline representation of the Interactions and contacts (H-bonds, Hydrophoblc, lonlc, Water bridges) summarized in the previous page. The top panel shows the total number of specilic contacts the protein makes with the llgand over the course of the trajectory. The bottom panel shows which residues interact with the ligand in each trajectory frame. Some resldues make more than one specific contact with the ligand, which is represented by a darker shade of orange, according to the scale to the right of the plot.

SCHRÖDINGER.

Ligand-Protein Contacts

A schematic of detalled ligand atom Interactions with the protein residues. Interactions that occur more than 30.0% of the simulation time in the selected trajectory (0.00 through 50.05 nsec), are shown.
Note: it is posslble to have interactions with $>100 \%$ as some residues may have multiple interactions of a slingle type with the same llgand atom. For example, the ARG slde chaln has four H-bond donors that can all hydrogen-bond to a single H -bond acceptor.

SCHRÖDINGER.

Ligand Torsion Profile

The ligand torsions piot summarizes the conformational evolution of every rotatable bond (RB) in the ligand throughout the simulation trajectory (0.00 through 50.05 nsec). The top panel 5 hows the 2 d schematic of a Ilgand with color-coded rotatable bonds. Each rotatable bond forsion is accompanled by a dial plot and bar plots of the same color.

Dial (or radial) plots describe the conformation of the torsion throughout the course of the simulation. The begining of the simulation is in the center of the radial plot and the time evolution is plotted radially outwards.

The bar plots summarize the data on the dial plots, by showing the probability denstity of the torsion. If torsional potential information is avallable, the plot also shows the potential of the rotatable bond (by summing the potential of the related torslons). The values of the potential are on the left Y-axis of the chart, and are expressed in kcaVmol. Looking at the histogram and torsion potential relationships may give insights Into the conformational strain the ligand undergoes to maintain a protein-bound conformation.

SCHRÖDINGER.

Ligand Properties

Ligand RMSD: Root mean square deviation of a llgand with respect to the reference conformation (typleally the first frame is used as the reference and it is regarded as time $t=0$).

Radlus of Gyration (rGyr): Measures the 'extendedness' of a ligand, and ls equivalent to its principal moment of Inertia.

Intramolecular Hydrogen Bonds (IntraHB): Number of Internal hydrogen bonds (HB) within a ligand molecule.
Molecular Surface Area (MolSA): Molecular surface calculation with $1.4 \AA$ probe radlus. Thls value is equivalent to a van der Waals surface area.

Solvent Accessilble Surface Area (SASA): Surface area of a molecule accessible by a water molecule.
Polar Surface Area (PSA): Solvent accesslble surface area in a molecule contributed only by oxygen and nitrogen atoms.

