Supplementary Information

Solution-processed Sb₂Se₃ Photocathodes under Se-rich Conditions and Their Photoelectrochemical Properties

Hui Jin Jin^{1,2}, Chaeyong Seong^{1,3}, Gyu Wan Choi^{1,2}, Ji-Youn Seo^{2*}, Min-Kyu Son^{1*}

¹Nano Convergence Materials Center, Emerging Materials R&D Division, Korea Institute of Ceramic Engineering & Technology (KICET), Jinju 52851, Republic of Korea

²Department of Nano Fusion Technology, Pusan National University, Busan 46241, Republic of Korea

³Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea

*E-mail: j-y.seo@pusan.ac.kr, minkyu.son@kicet.re.kr

Figure S1. EDX elemental map showing proportional distribution of Sb and Se. a) Sb:Se = 1:1.5, b) Sb:Se = 1:3, c) Sb:Se = 1:4.5, d) Sb:Se = 1:7.5, e) Sb:Se = 1:9.

Table S1. Sb and Se atomic ratios detected by EDX system.

Sb:Se	Se	Sb
1:1.5	29.63	4.64
1:3	34.64	7.20
1:4.5	37.49	8.72
1:7.5	50.48	7.16
1:9	71.50	10.52

Figure S2. Absorbance spectra of Sb_2Se_3 photocathodes with different molar ratios of Sb:Se; 1:1.5 (black), 1:3 (red), 1:4.5 (blue), 1:7.5 (green) and 1:9 (purple).

Table S2. Estimated band gap of Sb_2Se_3 photocathodes with different molar ratios of Sb:Se from Tauc-plot.

Sb:Se	1:1.5	1:3	1:4.5	1:7.5	1:9
Band gap (eV)	1.73	1.71	1.25	1.15	1.14

Figure S3. Cross-view FE-SEM images of the solution processed Sb_2Se_3 films with different molar ratios of Sb and Se. (a) Sb:Se = 1:1.5, (b) Sb:Se = 1:3, (c) Sb:Se = 1:4.5, (d) Sb:Se = 1:7.5, and (e) Sb:Se = 1:9.

Figure S4. XPS spectra in Se 3d of Sb₂Se₃ photocathode according to Sb:Se molar ratios. (a) Sb:Se = 1:1.5, (b) Sb:Se = 1:3, (c) Sb:Se = 1:4.5, (d) Sb:Se = 1:7.5, and (e) Sb:Se = 1:9.

Table S3. Photoelectrochemical performances of Sb₂Se₃ photocathode in other literatures and our work. (SnS₂ : Tin sulfide, Fh : Ferrihydrite, MoS_x : Molybdenum sulfide, RuO_x : Ruthenium oxide, OL : Organic layer, CdS : Cadmium sulfide, Cu:NiO_x : Cu-doped nickel oxide, C₆₀ : Fullerene)

Fabrication method	Composition (Substrate: FTO)	Onset Potential (V vs RHE)	Photocurrent density (mA/cm ² at 0 V vs RHE)	Electrolyte	Ref.
Vapor transport deposition	Sb ₂ Se ₃	0.3	-0.02	0.5 M Na ₂ SO ₄	10
	Sb ₂ e ₃ /SnS ₂ /Fh	0.3	-1.0	(pH 7)	10
Electrodeposition	Sb_2Se_3	0.2	-0.1	Na ₂ SO ₄	8
	Sb ₂ e ₃ /Pt	0.2	-1.4	(pH 6.5)	0
Electrodeposition of Sb /Selenization	Au/Sb ₂ Se ₃	•		$-1 \text{ M H}_2 \text{SO}_4$	21
	Au/Sb ₂ Se ₃ /MoS _x	0.12	-6		
	Au/Sb ₂ Se ₃ /MoS _x (Sulfurization)	0.25	-14	(p110)	
Sputtering of Sb /Selenization	Mo/Sb ₂ Se ₃ /CdS/TiO ₂ /Pt	0.54	-35.7	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	16
Sputtering of Sb /Selenization	Mo/Sb ₂ Se ₃ /TiO ₂ /Pt	0.3	-20	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	18
	Au/Sb ₂ Se ₃ /TiO ₂ /RuO _x	0.4	-30	H_2SO_4	20
Close space submination	Au/Sb ₂ Se ₃ /CdS/TiO ₂ /Pt	0.5	-18.5	(pH 1)	20
Close space sublimation	Au/Sb ₂ Se ₃ /OL/TiO ₂ /Pt	0.5	-35	H ₂ SO ₄ (pH 1)	7
Solution process	Au/Sb ₂ Se ₃ /TiO ₂ /Pt	0.3	-30	0.1 M H ₂ SO ₄ (pH 1)	23
Solution process	Au/Sb ₂ Se ₃ /CdS/TiO ₂ /Pt	0.5	-14	H ₂ SO ₄ (pH 1)	24
Solution process	Au/Sb ₂ Se ₃	0.5	-0.32	05 M H SO	26
	Au/Sb ₂ Se ₃ /TiO ₂ /Pt	> 0.4	-2.5	$0.5 \text{ M} \text{ H}_2 \text{ S} \text{ O}_4$	20
Solution process	Sb ₂ Se ₃ /TiO ₂ /Pt	0.3	-10	H_2SO_4	11
	Cu:NiO _x /Sb ₂ Se ₃ /TiO ₂ /Pt	0.34	-17.5	(pH 1)	
Solution process	Au/Sb ₂ Se ₃ /TiO ₂ /Pt	0.35	-12.5	0.1 M H ₂ SO ₄ (pH 1)	17
Solution process	Au/Sb ₂ Se ₃ /TiO ₂ /C ₆₀ /Pt	0.4	-17	H ₂ SO ₄ (pH 1)	6
Solution process	Au/Sb ₂ Se ₃	0.3	-0.18	05MHS0	0
	Au/Sb ₂ Se ₃ /TiO ₂ /Pt	0.3	-11.3	0.5 WI 112504	,
Solution process	Sb ₂ Se ₃	0.45	-0.24	0.1 M H ₂ SO ₄ (pH 1)	Our work