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Figure S1. (a) Schematic illustration of the single-heating-zone furnace for the synthesis of monolayer MoxW(1-x) 

S2ySe2(1-y) alloys. (b) Temperature profiles of the samples during growth. 

Figure S2. OM images of monolayer MoxW(1-x)S2ySe2(1-y) alloys. (a) Mo0.82W0.18S0.28Se1.72; (b) Mo0.69W0.31S0.62Se1.38; 

(c) Mo0.50W0.50S0.92Se1.08; (d) Mo0.39W0.61S1.20Se0.80; (e) Mo0.26W0.74S1.44Se0.56; (f) Mo0.10W0.90S1.64Se0.36. Scale bar 

100 μm.



Figure S3. (a) Composition-dependent Raman frequencies of MoxW(1-x) S2ySe2(1-y) with different weight ratios of 

MoS2 and WSe2 as growth sources. (b) Composition-dependent Raman frequencies of MoxW(1-x) S2ySe2(1-y) with 

different weight ratios of MoSe2 and WS2 as growth sources. 

Figure S4. Composition-dependent XPS spectra of monolayer MoxW(1-x) S2ySe2(1-y) alloys with different weight ratios 

of MoS2 and WSe2 as growth source. (a) Mo 3d, (b) W 4f, (c) S 2p and (d) Se 3d.



Figure S5. Composition-dependent XPS spectra of monolayer MoxW(1-x) S2ySe2(1-y) alloys with different weight ratios 

of MoSe2 and WS2 as growth source. (a) Mo 3d, (b) W 4f, (c) S 2p and (d) Se 3d.

Figure S6. STEM analysis of monolayer MoxW(1-x) S2ySe2(1-y) alloy. (a-b) The site distribution histograms of Mo and 

W in monolayer Mo0.82W0.18S0.28Se1.72 alloy, respectively. The image was divided into 25 × 25 parts. (c-d) The 

corresponding statistical histograms of Mo-site and W-site counts in each part of STEM image.



Figure S7. STEM analysis of monolayer MoxW(1-x) S2ySe2(1-y) alloy. (a-b) The site distribution histograms of SS and 

SeSe in monolayer Mo0.82W0.18S0.28Se1.72 alloy, respectively. The image was divided into 25 × 25 parts. (c-d) The 

corresponding statistical histograms of SS-site and SeSe-site counts in each part of STEM image.

Table S1. Summary of monolayer MoxW(1-x) S2ySe2(1-y) alloys synthesized with MoS2 and WSe2.

Mass Ratio Atomic Ratio Mo(x) Atomic Ratio S(y)

m
MoS2/WSe2

=9:1 0.90 0.87

 m
MoS2/WSe2

=7.5:1 0.84 0.82

m
MoS2/WSe2

=6:1 0.78 0.79

 m
MoS2/WSe2

=4.5:1 0.72 0.75

m
MoS2/WSe2

=3:1 0.67 0.69

m
MoS2/WSe2

=1:1 0.54 0.55

m
MoS2/WSe2

=1:2 0.43 0.41

m
MoS2/WSe2

=1:3 0.37 0.38

 m
MoS2/WSe2

=1:4.5 0.25 0.26

m
MoS2/WSe2

=1:6 0.18 0.20

 m
MoS2/WSe2

=1:7.5 0.12 0.15

m
MoS2/WSe2

=1:9 0.07 0.11



Table S2. Summary of monolayer MoxW(1-x) S2ySe2(1-y) alloys synthesized with MoSe2 and WS2.

Mass Ratio Atomic Ratio Mo(x) Atomic Ratio S(y)

m
MoSe2/WS2

=9:1 0.96 0.05

   m
MoSe2/WS2

=7.5:1 0.90 0.07

m
MoSe2/WS2

=6:1 0.82 0.14

   m
MoSe2/WS2

=4.5:1 0.75 0.20

m
MoSe2/WS2

=3:1 0.69 0.31

m
MoSe2/WS2

=2:1 0.58 0.38

m
MoSe2/WS2

=1:1 0.50 0.46

 m
MoSe2/WS2

=1:2 0.45 0.52

m
MoSe2/WS2

=1:3 0.39 0.60

   m
MoSe2/WS2

=1:4.5 0.35 0.66

m
MoSe2/WS2

=1:6 0.26 0.72

m
MoSe2/WS2

=1:7.5 0.21 0.75

m
MoSe2/WS2

=1:9 0.10 0.82


