Supporting Information

Synthesis of Component-Controllable Monolayer Mo_xW_(1-x)S_{2y}Se_{2(1-y)} Alloys with Continuously Tunable Band Gap and Carrier Type

You Li^{1,2}, Kangkang Wang², Yiwen Wang¹, Wenbin Huang, Junqi Wang¹, Qichao

Yang¹, Ziyue Qian², Honggang Wang², Junyi Liao², Sabir Hussain², Liming Xie² and

Junjie Qi^{1*}

¹ School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China

²School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China

Figure S1. (a) Schematic illustration of the single-heating-zone furnace for the synthesis of monolayer $Mo_x W_{(1-x)}$ S_{2y}Se_{2(1-y)} alloys. (b) Temperature profiles of the samples during growth.

Figure S2. OM images of monolayer $Mo_x W_{(1-x)} S_{2y} Se_{2(1-y)}$ alloys. (a) $Mo_{0.82} W_{0.18} S_{0.28} Se_{1.72}$; (b) $Mo_{0.69} W_{0.31} S_{0.62} Se_{1.38}$; (c) $Mo_{0.50} W_{0.50} S_{0.92} Se_{1.08}$; (d) $Mo_{0.39} W_{0.61} S_{1.20} Se_{0.80}$; (e) $Mo_{0.26} W_{0.74} S_{1.44} Se_{0.56}$; (f) $Mo_{0.10} W_{0.90} S_{1.64} Se_{0.36}$. Scale bar 100 µm.

Figure S3. (a) Composition-dependent Raman frequencies of $Mo_xW_{(1-x)} S_{2y}Se_{2(1-y)}$ with different weight ratios of MoS_2 and WSe_2 as growth sources. (b) Composition-dependent Raman frequencies of $Mo_xW_{(1-x)} S_{2y}Se_{2(1-y)}$ with different weight ratios of $MoSe_2$ and WS_2 as growth sources.

Figure S4. Composition-dependent XPS spectra of monolayer $Mo_x W_{(1-x)} S_{2y} Se_{2(1-y)}$ alloys with different weight ratios of MoS_2 and WSe_2 as growth source. (a) Mo 3d, (b) W 4f, (c) S 2p and (d) Se 3d.

Figure S5. Composition-dependent XPS spectra of monolayer $Mo_xW_{(1-x)}S_{2y}Se_{2(1-y)}$ alloys with different weight ratios of $MoSe_2$ and WS_2 as growth source. (a) Mo 3d, (b) W 4f, (c) S 2p and (d) Se 3d.

Figure S6. STEM analysis of monolayer $Mo_x W_{(1-x)} S_{2y} Se_{2(1-y)}$ alloy. (a-b) The site distribution histograms of Mo and W in monolayer $Mo_{0.82} W_{0.18} S_{0.28} Se_{1.72}$ alloy, respectively. The image was divided into 25 × 25 parts. (c-d) The corresponding statistical histograms of Mo-site and W-site counts in each part of STEM image.

Figure S7. STEM analysis of monolayer $Mo_x W_{(1-x)} S_{2y} Se_{2(1-y)}$ alloy. (a-b) The site distribution histograms of SS and SeSe in monolayer $Mo_{0.82} W_{0.18} S_{0.28} Se_{1.72}$ alloy, respectively. The image was divided into 25 × 25 parts. (c-d) The corresponding statistical histograms of SS-site and SeSe-site counts in each part of STEM image.

Mass Ratio	Atomic Ratio Mo(x)	Atomic Ratio S(y)
$m_{MoS_2/WSe_2} = 9:1$	0.90	0.87
$m_{MoS_2/WSe_2} = 7.5:1$	0.84	0.82
$m_{MoS_2/WSe_2} = 6:1$	0.78	0.79
$m_{MoS_2/WSe_2} = 4.5:1$	0.72	0.75
$m_{MoS_2/WSe_2} = 3:1$	0.67	0.69
$m_{MoS_2/WSe_2} = 1:1$	0.54	0.55
m _{MoS2} /WSe2=1:2	0.43	0.41
m=1:3	0.37	0.38
$m_{MoS_2/WSe_2} = 1:4.5$	0.25	0.26
$m_{MoS_2/WSe_2} = 1:6$	0.18	0.20
$m_{MoS_2/WSe_2} = 1:7.5$	0.12	0.15
m _{MoS₂/WSe₂} =1:9	0.07	0.11

 $Table \ S1. \ Summary \ of \ monolayer \ Mo_x W_{(1-x)} \ S_{2y} Se_{2(1-y)} \ alloys \ synthesized \ with \ MoS_2 \ and \ WSe_2.$

Mass Ratio	Atomic Ratio Mo(x)	Atomic Ratio S(y)
$m_{MoSe_2/WS_2} = 9:1$	0.96	0.05
$m_{MoSe_2/WS_2} = 7.5:1$	0.90	0.07
m _{MoSe2} /WS2=6:1	0.82	0.14
$m_{MoSe_2/WS_2} = 4.5:1$	0.75	0.20
$m_{MoSe_2/WS_2} = 3:1$	0.69	0.31
m _{MoSe2} /WS2=2:1	0.58	0.38
$m_{MoSe_2/WS_2} = 1:1$	0.50	0.46
$m_{MoSe_2/WS_2} = 1:2$	0.45	0.52
m _{MoSe2} /WS ₂ =1:3	0.39	0.60
$m_{MoSe_2/WS_2} = 1:4.5$	0.35	0.66
m _{MoSe2} /WS2=1:6	0.26	0.72
$m_{MoSe_2/WS_2} = 1:7.5$	0.21	0.75
m _{MoSe2} /WS2=1:9	0.10	0.82

 $Table \ S2. \ Summary \ of \ monolayer \ Mo_x W_{(1-x)} \ S_{2y} Se_{2(1-y)} \ alloys \ synthesized \ with \ MoSe_2 \ and \ WS_2.$