Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Natural transaminase fusions for biocatalysis

Luba Prout,^a Helen C. Hailes^b and John M. Ward^{*a}

Table of Contents

Tal	Table of Contents 2						
Tal	Table of Tables						
Tal	ole of	f Figur	es	3			
1.	E>	kperin	nental	4			
	1.1	Bioin	formatics	4			
	1.	BLASTP of the <i>Pp</i> KTFusion (1-959 aa)					
	1.	1.2	Conserved domains	6			
	1.	1.3	MSA				
	1.	1.4	BLASTP of the <i>Pp</i> KTFusion N- (1-526 aa) and C-terminal (527-959 aa) domains				
	1.	1.5	P. putida K12440 gene cluster analysis				
	1. 1	1.0 1.7	Phylogenetic analysis				
	1. 1	1.7 1 8	Residue conservation				
	1	19	Structural homologs				
	1.	1.10	3D Models				
	1.	1.11	Structural alignment				
	1 7	Ducto		22			
	1.2	Prote	Protoin expression and purification				
	1.	2.1 2.2	Protein expression – general protocol				
	1	2.2 2 3	Enzyme nurification				
	1.	2.5					
	1.3	Enzyr	ne assays				
	1.	3.1	Colorimetric assays with purified enzymes				
	1.	3.2 2.2	End-point assays				
	1.	3.3	inermostability assays				
	1.4	Analy	tical HPLC				
	1.5	Kinet	ic parameters of <i>Pp</i> KTFusion/ <i>Pp</i> KTTAm and <i>Tf</i> Fusion/ <i>Tf</i> TAm				
2.	Pr	rotein	sequences				
	2.1	Pseud	domonas putida KT2440 PP_2782				
	2.	1.1	PpKTFusion protein sequence				
	2.	1.2	PpKTTAm protein sequence				
	2.	1.3	<i>Pp</i> KTDHR protein sequence				
	2.2	Therr	naerobacter marianensis DSM 12885 Tmar 2123				
	2.	2.1	TmFusion protein sequence				
	2.	2.2	TmTAm protein sequence				
	2.	2.3	TmDHR protein sequence				
	2.3	Therr	naerobacter subterraneus DSM 13965 ThesuDRAFT 00745				
	2.	3.1	TsFusion protein sequence	33			
	2.	3.2	TsTAm protein sequence				
	2.	3.3	TsDHR protein sequence				
	2.4	Therr	nincola ferriacetica Z-0001 Tfer_2018				
	2.	4.1	<i>Tf</i> Fusion protein sequence				
	2.	4.2	<i>Tf</i> TAm protein sequence				
	2.	4.3	TfDHR protein sequence				
3.	Re	eferen	ces	35			

Table of Tables

Table S1. <i>Pp</i> KTFusion BLASTP results summary.	5
Table S2. PpKTfusion conserved domain general function prediction by NCBI CD-Search.	6
Table S3. PpKTFusion C-terminal domain BLASTP results summary	7
Table S4. PpKTFusion KT2440 natural fusion OMA-identified orthologs with gene neighbourhood	9
Table S5. antiSMASH output for the selected thermophilic strains.	11
Table S6. Thermophilic fusion sequence similarity results.	13
Table S7. Thermophilic fusion conserved domain' general function prediction by NCBI CD-Search	13
Table S8. Thermophilic fusion BLASTP results summary.	14
Table S9. PpKTFusion N- and C-terminal domain principal structural homologs.	17
Table S10. Thermophilic enzyme N-terminal domain principal structural homologs.	18
Table S11. Thermophilic enzyme C-terminal domain principal structural homologs	19
Table S12. Results of PpKTFusion conserved residue mapping to AAR and thermophilic homologs through	a 3D structure
alignment	21

Table of Figures

Fig. S1. Phylogenetic tree showing all available PpKTFusion homologs with comparable gene clusters (as at January 2	2022). 8
Fig. S2. PpKTFusion and thermophilic homolog' amino acid sequence alignment	12
Fig. S3. <i>Pp</i> KTFusion residue conservation analysis	15
Fig. S4. 3D models of the P. putida KT2440 transaminase fusion and its thermophilic homologs	20
Fig. S5. SDS-PAGE of <i>Pp</i> KTFusion, <i>Pp</i> KTTAm, and <i>Pp</i> KTDHR expression, post-optimisation	23
Fig. S6. SDS-PAGE gel of TmFusion, TmTAm, and TmDHR expression	24
Fig. S7. SDS-PAGE gel of TsFusion, TsTAm, and TsDHR expression	25
Fig. S8. SDS-PAGE gel of TfFusion, TfTAm, and TfDHR expression	26
Fig. S9. Typical 3-phenyl-1-propylamine HPLC standard curve used to determine product concentration in samples	27
Fig. S10. Colour intensity development in control samples	28
Fig. S11. Thermostability analysis of TfFusion.	29
Fig. S12. Analytical HPLC method.	29
Fig. S13. Non-linear regression plots of <i>Pp</i> KTFusion/ <i>Pp</i> KTTAm and <i>Tf</i> Fusion/ <i>Tf</i> TAm	30
Fig. S14. <i>Pp</i> KTFusion protein sequence	31
Fig. S15. <i>Pp</i> KTTAm protein sequence	31
Fig. S16. <i>Pp</i> KTDHR protein sequence	31
Fig. S17. TmFusion protein sequence	32
Fig. S18. TmTAm protein sequence	32
Fig. S19. TmDHR protein sequence	32
Fig. S20. TsFusion protein sequence	33
Fig. S21. TsTAm protein sequence	33
Fig. S22. TsDHR protein sequence	33
Fig. S23. TfFusion protein sequence	34
Fig. S24. TfTAm protein sequence	34
Fig. S25. TfDHR protein sequence	34

1. Experimental

1.1 Bioinformatics

1.1.1 BLASTP of the *Pp*KTFusion (1-959 aa)

To search for natural fusion primary sequence homologs, an amino acid sequence of an enzyme was used as input for BLASTP (NCBI), accessible at https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins. Default parameters were used throughout, except for the maximum number of sequences, which was increased to 1000.

Homologs with >99% query cover (QC) and >72% ID were only found in species of *Pseudomonas* genus. These were class III PLP-dependent TAm enzymes with sequence lengths of 955 aa, 956 aa, and 959 aa. Sequences with 69-99% QC and 24-46% identity (ID) were identified in various genera – but predominantly in *Bacillus, Leptospira, Nocardia, Photorhabdus, Pseudomonas, Rhodococcus, Streptomyces,* and *Xenorhabdus* (**Table S1**). Entries with 21-71% QC and 24-44% ID were from various genera and were primarily between 400-600 aa in length and included enzymes classified as class III PLP-dependent TAms, notably acetylornithine, putrescine or succinyldiaminopimelate TAms, or hypothetical proteins.

Table S1. *Pp*KTFusion BLASTP results summary.

Number of sequences	Query cover	Identity	Genus and Species
Tier 1			
64 fusion-likeª	99-100%	95-100%	Pseudomonas putida group, Pseudomonas sp., including 43(2021) / B8(2017) / B14(2017) / C5pp / CFA / JY-Q / Leaf58 / NBRC 111118 / NBRC 111125 / SID14000 / SWI36 / SWRI50 / p21 / XWY-1, Pseudomonas alloputida, Pseudomonas asiatica, Pseudomonas monteilii, Pseudomonas plecoglossicida, Pseudomonas taiwanensis SJ9, Pseudomonas tehranensis, <u>Aeromonas caviae</u> *
117 fusion-likeª	99-100%	80-83%	Pseudomonas asgharzadehiana, Pseudomonas asplenii, Pseudomonas baetica, Pseudomonas bananamidigenes, Pseudomonas botevensis, Pseudomonas caspiana, Pseudomonas crudilactis, Pseudomonas ekonensis, Pseudomonas fluorescens, Pseudomonas glycinae, Pseudomonas jessenii, Pseudomonas koreensis, Pseudomonas leptonychotis, Pseudomonas mandelii, Pseudomonas marginalis, Pseudomonas monsensis, Pseudomonas prosekii, Pseudomonas sivasensis, Pseudomonas spp., including 22E 5 / 2822-17 / 31-12 / 31E 6 / 43NM1 / A-RE-26 / AD21 / B11(2017) / B14-6 / B15(2017) / B26(2017) / B28(2017) / B35(2017) / CFBP13506 / F01002 / FIT28 / FSL W5-0299 / GM / IAC-BECa141 / Irchel 3H9 / Irchel s312 / Irchel s3f10 / Irchel s3h9 / LG1E9 / MG-9 / MIACH / MS586 / MWU318 / NIBRBAC000502773 / ok266 / PGPPP2 / R16(2017) / R84 / RIT357 / Root329 / RU47 / S49 / SC3(2021) / SCA2728.1_7 / SH10-3B / SIZ131 / SW-3, Pseudomonas stutzeri, Pseudomonas tensinigenes, Pseudomonas viridiflava, Pseudomonas zeae
		72-74%	Atopomonas hussainii (formerly Pseudomonas hussainii), Pseudomonas leptonychotis, Pseudomonas sp. CC6-YY-74 / OF001 / A-1 / MAHUQ-58 / SDI
		68%	Unidentified Gammaproteobacteria bacterium
Tier 2			
580 fusion-ª or large multi-domain- ^b like	69-99%	24-46%	various species, predominantly from Bacillus, Deltaproteobacteria, Firmicutes, Gemmatimonadetes, Leptospira, Micromonospora, Nocardia, Photorhabdus, Planctomycetes, Pseudoalteromonas, Pseudomonas, Rhodococcus, Streptomyces, Syntrophomonadaceae, and Xenorhabdus genera
<u>Tier 3</u>			
948 TAm-like ^c	21-71%	24-44%	various species, predominantly from Actinosynnema, Bacillus, Brevibacillus, Buttiauxella, Citrobacter, Cronobacter, Desulfotomaculum, Dickeya, Enterobacter, Enterobacteriaceae, Escherichia, Kitasatospora, Klebsiella, Mesorhizobium, Micromonospora, Ochrobactrum, Pectobacterium, Pseudomonas, Rhizobium, Rhodococcus, Saccharothrix, Shigella, Streptomyces genera

^a entries with sequence length ranging between 720-1200 aa

^b entries with sequence length >1400 aa

^c entries with sequence length ranging between 200-600 aa

*more recent searches (performed for keeping up-to-date with the emerging new data) have now also identified a close homolog in *Aeromonas caviae*.

1.1.2 Conserved domains

Conserved domains within the *P. putida* transaminase fusion (*Pp*KTFusion) were identified using NCBI CD-Search, accessible at https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi.

Table S2. PpKTfusion conserve	domain general function	prediction by	NCBI CD-Search.
-------------------------------	-------------------------	---------------	-----------------

Enzyme	Conserved Domain	aa region
<i>Pp</i> KTFusion AAN68390.1	AAT_I superfamily PLP-dependent aspartate aminotransferase (fold type I)	41-521
	COG5322 superfamily Predicted amino acid dehydrogenase [general function prediction only]	610-948

1.1.3 MSA

Multiple sequence alignments (MSA), comprised of natural fusion (or parts thereof) primary sequence homologs, were generated using ClustalOmega online tool (EMBL-EBI), accessible at http://www.ebi.ac.uk/Tools/msa/clustalo/. Protein sequence alignment results were visualised using Sequence Manipulation Suite, accessible at https://www.bioinformatics.org/sms2/index.html.

1.1.4 BLASTP of the PpKTFusion N- (1-526 aa) and C-terminal (527-959 aa) domains

Additional BLASTP analysis of the proposed N-terminal domain (1-526 aa) returned analogous results to that generated by *Pp*KTFusion itself. In contrast, BLASTP results of the proposed C-terminal domain (527-959 aa) were more varied and included entries that were not returned by the *Pp*KTFusion search (**Table S3**). Of these, over 200 entries were dehydrogenase-/reductase-like (including 123 shikimate/quinate 5-dehydrogenases, 18 semialdehyde dehydrogenases, 17 amino acid dehydrogenases, 4 glutamyl-tRNA reductases, and 3 long-chain acyl-carrier-protein reductases) with the sequence length ranging between 120-584 aa. All entries with the single functional motif aligned with the 551/561-959 aa region of *Pp*KTFusion (results not shown).

Table S3. *Pp*KTFusion C-terminal domain BLASTP results summary.

Number of sequences	Query cover	Identity	Genus and Species
<u>Tier 1</u>			
17 fusion-likeª	99-100%	80-100%	Pseudomonas, Pseudomonas mandelii, Pseudomonas monteilii, Pseudomonas putida, Pseudomonas sp. B11(2017) / B14(2017) / B15(2017) / B26(2017) / B28(2017) / B35(2017) / B8(2017) / MIACH / R16(2017)
<u>Tier 2</u>			
180 fusion-ª or large multi-domain- ^b like	66-99%	20-49%	various species, predominantly from Anaerolineae, Anaerolineales, Armatimonadetes, Chloroflexi, Firmicutes, Pseudomonas and Rhodococcus genera
364 dehydro-genase- like and other ^c	52-94%	20-42%	various species, predominantly from Anaerolineaceae, Armatimonadetes, Caldanaerobacter, Cellulomonas, Desulfotomaculum, Moorella, Omnitrophica, Peptococcaceae, Thermoanaerobacter, Thermoanaerobacterium genera
<u>Tier 3</u>			
8 fusion-likeª	24-49%	27-32%	predominantly from Vibrio genera
25	9-44%	25-41%	various
dehydro-genase- like and other ^c			
^a entries with seau	uence length ra	anging betwee	n 680-980 aa

^b entries with sequence length >1500 aa

^c entries with sequence length ranging between 200-580 aa

1.1.5 *P. putida* KT2440 gene cluster analysis

Fig. S1. Phylogenetic tree showing all available *Pp*KTFusion homologs with comparable gene clusters (as at January 2022). The tree was generated using https://itol.embl.de/.

1.1.6 Phylogenetic analysis

*Pp*KTFusion (PP_2782), *Tm*Fusion (Tmar_2123), *Ts*Fusion (ThesuDRAFT_00745), and *Tf*Fusion (Tfer_2018) gene orthologs and local synteny were analysed using OMA (<u>o</u>rthologous <u>ma</u>trix) Browser, accessible at https://omabrowser.org/.

Organism / Gene neighbourhood ^a	Ortholog NCBI Reference	Organism Properties Morphology: Gram, shape, motility. Environment: physico-chemical properties, oxygen, temp.	Seq. length (aa)	% ID
Pseudomonas putida KT2440	AAN68390.1	Gram-negative, rod-shaped, motile, aerobic, mesophilic	959	ref
Pseudomonas putida BIRD-1	WP_014591311.1	Gram-negative, rod-shaped, motile, aerobic, mesophilic	956	99%
Pseudomonas taiwanensis	WP_012052687.1	Gram-negative, rod-shaped, motile; non-halophilic, aerobic, mesophilic	956	98%
Streptomyces albulus	WP_038520874.1	Gram-positive, filamentous, nonmotile; aerobic, mesophilic	967	45%
Streptomyces scabiei 87.22	WP_012998118.1	Gram-positive, filamentous/tailed, motile; aerobic, mesophilic	910	30%
Streptomyces glaucescens	WP_052413620.1	Gram-positive, spore-forming, aerobic, mesophilic	906	31%
Photorhabdus laumondii subsp. iaumondii	WP_011148476.1	Gram-negative, rod-shaped, motile, facultative anaerobe, mesophilic	855	25%
Photorhabdus asymbiotica \longrightarrow	WP_012776617.1	Gram-negative, rod-shaped, nonmotile, facultative anaerobe, mesophilic	855	25%
Cellvibrio japonicus Ueda 107	WP_012489320.1	Gram-negative, rod-shaped, motile, aerobic, mesophilic	876	26%

Table S4. *Pp*KTFusion KT2440 natural fusion OMA-identified orthologs with gene neighbourhood.

Table S4. Continued.

family. Gene neighbourhood was visualised using a Python script ('GeneNBHD'), with ORF data pulled directly from NCBI.

Compound Type	Most similar known cluster		Known cluster product description		Similarity %	
Thermaerobacter marianensi	s DSM 12885					
saccharide ^a	fengycin	NRP	antimicrobial lipopeptide/fungicide	1	13%	
fatty acid ^b	undecylprodigiosin	NRP + polyketide	prodiginine family alkaloid with antifungal properties and potential antimalarial, anticancer, immunosuppressive and antialgal activity	2	9%	
saccharideª	burkholderic acid	NRP + polyketide (modular type I)	a signalling molecule	3	6%	
saccharide ^a (x5)	none found					
Thermaerobacter subterraneu	<i>IS</i> DSM 13965					
saccharide ^a	fengycin	NRP	see above	1	13%	
fatty acid ^b	undecylprodigiosin	NRP + polyketide	see above	2	9%	
saccharide ^a (x7)	none found					
Thermincola ferriacetica Z-000	01					
saccharideª	L-2-amino-4-methoxy- trans-3-butenoic acid	NRP	non-proteinogenic amino acid toxin with antibacterial and anticancer properties	4,5	20%	
saccharideª	S-layer glycan	saccharide	G. stearothermophilus cell surface protein polysaccharide	6	20%	
saccharide ^a	legionaminic acid	other	an amine-containing monosaccharide (sialic acid analogue) present on the surface of bacterial pathogens	7	16%	
fatty acid ^ь	undecylprodigiosin	NRP + polyketide	see above	2	9%	
saccharide ^a	paulomycin	other	glycosylated antibiotic	8	3%	
cyclic-lactone-autoinducer ^c	7-deoxypactamycin	polyketide (iterative type I) + saccharide (hybrid/tailoring)	antitumor antibiotic	9	3%	
saccharide ^a (x7)	none found					
cyclic-lactone-autoinducer ^c	none found					
β-lactone ^d	none found					
ranthipeptide ^e	none found					
halogenated ^f	none found					
^a saccharide cluster (likely from	primary metabolism)					
^b fatty acid cluster (likely from p	rimary metabolism)					
^c agrD-like cyclic lactone autoin	ducer peptide					

Table S5. antiSMASH output for the selected thermophilic strains.

^d beta-lactone (cyclic carboxylic ester) containing protease inhibitor

^e cysteine-rich / non- α thioether-containing RiPP peptide

^f cluster containing a halogenase (potentially generating a halogenated product)

1.1.7 Thermophilic homologs

PpKTFusion/1-959	MTVMDYRDFVRPKFVGLLOALGLECEERALCSQLFYRNPKGDMVTVTDFLGGYGAALFGHNDPQFVDQLCALLRSDVPF	80
TmFusion/1-981	MHPFRQYVNPHLGELLEQIQMDKRFVRGQCCWLWDEDGRRYLDFVAAYGALPFGFNPPEIWAALEEARRQGEPS	74
TsFusion/1-886	MHPFRQYVNPHLAELLEQIQMDKRFVRGECCWLWDDQGRRYLDFVAAYGALPFGFNPPEIWAALEEARHRGEPS	74
TfFusion/1-902	MKFSSLNPTMDKLFECFKLDVAVVKGECTYLYDQAGNKYLDFIAQYGAVPFGYNPPELVAAAKKYFDLSLPS	72
PpKTFusion/1-959 TmFusion/1-981 TsFusion/1-886 TfFusion/1-902	NAOMSIRGAAGOLGRALSDAFNRELKNTERYIS <mark>TFSNSGAEAVETAVKHA</mark> EFRRQKSLQKQFDDIDFTLASLTASEHAYR FIOPSFLNAAGELARRLIEVA-PPGLRYVTFANSGAEAVEAATKLARAAA	160 122 122 120
PpKTFusion/1-959 TmFusion/1-981 TsFusion/1-886 TfFusion/1-902	ELDVADLDLPAGVLPATLNSVALRQVVEAVRQHNLAQLHIEPVFVALRGS <mark>BHGK</mark> LVNTVQLAYGRQMRAPFARFCLNVBF 	240 164 164 162
PpKTFusion/1-959	IDPQOPHOLOELPARHTHHWLSLQWDGEHLHVLQLPFSAITAVLMEPIQGEGGINEFAAEFYLG'RKICNEQQCPLVV	318
TmFusion/1-981	VPYGDVAALEQALAARTGEYAAFIVEPIQGEGGIVVPPPGYLRAAREICRRHGVLFIV	222
TsFusion/1-886	VPYGDLEALERALAARTGEYAAFIVEPIQGEGGIVVPPPGYLREAREVCRRHGVLFIA	222
TfFusion/1-902	IPFGDLDMLENKMRTEGKQIAAFIVEPIQGEGGIVVPPGYLREAREVCRRHGVLLAV	220
PpKTFusion/1-959	DEVQSCFGRAGTFLASSQFNLQGDYYCLSKALGGGLMKIAATVIRSSHVEGEFSYIHSSTFAEDDPSCHIALSALRRLFA	398
TmFusion/1-981	DEVQTCLGRTCALFACQAEGVTPDAMTLAKALGGGLMPICAVLCTEEVYTEBFATKHSSTFACNTLACRAGLAALDLLTR	302
TsFusion/1-886	DEVQTCLGRTCVLFACQAEGVTPDAITLAKALGGGLMPICAVLCTEEVYTEBFATKHSSTFACNTLACRAGLAALDLLTR	302
TfFusion/1-902	DEIQTCLGRTGELFACDREGVEPDILLLSKALGGGLVPLGVCLSTRQAWNEBFGRLHSSTFANNNFTCAIGLAVLNKLLE	300
PpKTFusion/1-959	DDDAMIKDIRTKCAYLKASINELKMAYPDVIADVRGRCLLVGLELHDLSVSSSLVQASAQYNDALGYLIAGYLLOF	474
TmFusion/1-981	DDQALVRHVAETCEYLRQGILAIQRRHPRVIRSVRGRGFMLGLOFGVTRETFPGNLLGVMGEOELLTPVIASYLLNV	379
TsFusion/1-886	DEQALVRHVAETCEYLRQCILAIQRRHPRVIRSVRGRGFMLGIOFGVDREAFPGNLLGVMGEOELLTPVIASYLLNV	379
TfFusion/1-902	NGRQLINNAKSACNYLLKNLEDINRQYPGVIKEIRGRGLMLGLEFNEFDG-SESFSMKYLAEOCGFSPLLAGYLLNV	376
PpKTFusion/1-959 TmFusion/1-981 TsFusion/1-886 TfFusion/1-902	EALRVAPSGSNSNVTRLEPPACITLGEIDKLIAALORVCDMLRRGDALPLAAGICADSMPALPARQDDFRVTE EGLRVAPTINGADVIRIEPPUIATREBCDYALAAIERVVDLIDREDTAGULRHLVGQCRVGQDRHGATSPDHGMNGRS EGLRVAPTINGADVIRIEPPUIATRECDYALAAIERVVELIDRDDTAAULRHLVSPQATTGQAV	547 457 444 444
PpKTFusion/1-959	-PVENRDAKVEVVARVAFINH	567
TmFusion/1-981	AAIGRVVVGRSGTGVTRDGDGASRRATGAGELPATGRGGQVGTGTVHGGASQTPAAGSSREEPATPSDDPAEGRPAPIVH	537
TsFusion/1-886	H-QPALLAVRSREPEEAVAPSGDPREGPATIVH	482
TfFusion/1-902	KKAVTGSELLPEEKPTEKPAFIIH	468
PpKTFusion/1-959	LIDADILGDVDPSLAALSPEQKRTFINRTKPERRAVPVGPVIIRSRLGMAVEFTLYPICMDSDAMAEYIRSGDLDSIR	645
TmFusion/1-981	PVDLENYPEFDPGLAAFTREELADLAGRWNHLLKPFRIGQTRVVSTCGRTAYGEFYVVPRTADELLAMPAQDA-V	611
TsFusion/1-886	PVDLENYPEFDPSLAAFSRAELEELAGRWNHLLKPFRIGRTRVVSAAGATAYGEFYAVPRTADEFLAMPQADA-V	556
TfFusion/1-902	YPSSEDVIKNNPSFKKASKDILEKLIDWEASLDAEPEVIVHLPATKSKAGKIAEGWLIGIPYSGRHMMEMPRKDA-V	544
PpKTFusion/1-959	EEVGRRUTDARADCCSIAGLGMYTSIVTNNCQALKIADMALTSGNALTICMCLEAIEOGCVQQCLALCEOTAAVVGAAGN	725
TmFusion/1-981	AAVKEALDLARDGCARIVGLGAYTSVVTRGGLHLRDAGVALTTGNSFTVAAVDAIDEATRRLGFPLAESTVAVVGATGA	691
TsFusion/1-886	AEIEEAIELARENCARIVGLGAYTSVVTRGGLHLRDAGVALTTGNSFTVVAAVEAIAEASRRLGFPLCCGTVAVVGATGA	636
TfFusion/1-902	KVLVTALDKAKALCARIVGLGAYTSVVSRGGSDLQGKGIAVTSGNSYTIATAFDALIEGARLMGIDPAESTCCVIGATGS	624
PpKTFusion/1-959	VASTYASVLSATVDHLILIGSGRDGSVRRLEKTAOQIYADAARSILKGTAEHDRLAQRLLILDGFRG	792
TmFusion/1-981	ICRATALIIGPRVORILLIGNPARPEQSRRRLIRVAGEICRHVLVSAGRPSPVGRAGRVDDGDRDQE	758
TsFusion/1-886	ICRATALIIAGEVRRIVLIGNPARPEQSRRRLIRVAADIARHVLSIAASG-RVAKIKGIAKWLKGFLDRKRK	687
TfFusion/1-902	IGRVCAILLAEEIDKLVLVGNPEKEKTSLRRMEQLADEIYTRAFREILAYKGKVAKIKGIAKWLKGFLDRKRK	697
PpKTFusion/1-959	KADLGLHIARLV-DERLGANAFITVTNDL-DAIKGARIVL	837
TmFusion/1-981	NHGAPLGGSGAAFFNRFGTAEAGELAPLAAQILDFGGWPNADAPVEEFVRRLETWMARGQCPLVITTDLDAMLPLADVVV	838
TsFusion/1-886	PLGPLAQVIVEFGGWPDPAEPAEAFLPRLEAWLAAGRCPLVVTTDLDAMLPQADVVV	744
TfFusion/1-902	DDPEVWNKLTAL-ENQGFSINGYIHENLAAKGKYSNPPVKITVNLKQALLQSDLII	753
PpKTFusion/1-959	CAANAPQPFLGAEHFAERSVICDIAVPLNVHQDLPSQREDVLYMHGGIVQTPFDDGLAPNVRAYLKKGQLYACMABSVLM	917
TmFusion/1-981	TATSSTAHLVTPGNVKFGAVVCDLSRPPNVSREVRDARPDVLVIDGGVIEVPGRPSLGWNFGFERGLVYACMABTMIL	916
TsFusion/1-886	TATSSTAHLVTPRNVKFGAVVCDLSRPPNVSREVGDARPDVLVIDGGVIEVPGRPSMGWNFGFERGLVYACMABTMML	822
TfFusion/1-902	SASNSTNHLIGPGHLKPGSVICDVARPPDVSEAVLEQRKDVLVIEGGLVQYPDDICFGQNMGYEPGVNMACLSETMLL	831
PpKTFusion/1-959 TmFusion/1-981 TsFusion/1-886 TfFusion/1-902	GTSGMSQHGSYGD-ISREQYQQVRATAATHGETIAQFKTQNSL959 ALEHHYQHTSLGADINLETILWLEELARKHGERUAQLRSFDRPLPDEAWERLVAARSAVLGSAAR981 ALEHHYRHTSLGADINLETILWIKDIARQHGERUAELRSFDRPLPAEAWERVLAARSALG-TAAR886 ALEGTYRDFSIGLKIPVENWYYLRE <mark>LAQRHGE</mark> KLATPWNKNGGVTPEVARMIKEAALKNE-NVEKIKTPKSS 902	

Fig. S2. *Pp***KTFusion and thermophilic homolog' amino acid sequence alignment.** Residues highlighted in black are identical in all sequences. Residues highlighted in grey are synonymous. Red and blue squares show the implied boundaries of the N- and C-terminal domains, respectively, with the sequence in between proposed as the linker peptide. *Pp*KTFusion N-terminal domain boundary was based on the sequence alignment at the time.

Homolog	Organism	Seq. Length	Query cover	Identity			
<i>Tm</i> Fusion	Thermaerobacter marianensis DSM 12885	981	ref	ref			
Ts Fusion	Thermaerobacter subterraneus DSM 13965	886	92%	93%			
<i>Tf</i> Fusion	Thermincola ferriacetica Z-0001	902	87%	49%			
Analysis was performed using BLASTP.							

Table S6. Thermophilic fusion sequence similarity results.

Table S7. Thermophilic fusion conserved domain' general function prediction by NCBI CD-Search.

Enzyme	Conserved Domain	aa region
<i>Tm</i> Fusion ADU52204.1	ArgD acetylornithine/succinyldiaminopimelate/putrescine aminotransferase [amino acid transport and metabolism]	22-419
	COG5322 superfamily Predicted amino acid dehydrogenase [general function prediction only]	579-949
<i>Ts</i> Fusion EKP95021.1	ArgD Acetylornithine/succinyldiaminopimelate/putrescine aminotransferase [amino acid transport and metabolism]	22-419
	COG5322 superfamily Predicted amino acid dehydrogenase [General function prediction only]	468-855
<i>Tf</i> Fusion KNZ69380.1	ArgD Acetylornithine/succinyldiaminopimelate/putrescine aminotransferase [amino acid transport and metabolism]	1-418
	COG5322 superfamily Predicted amino acid dehydrogenase [General function prediction only]	513-864

Number of sequences	Query cover	Identity	Genus and Species
Tier 1 TmFusion			
10 fusion-likeª	91-100%	71-100%	Thermaerobacter sp. PB12/4term, Thermaerobacter subterraneus, Firmicutes bacterium, Symbiobacterium terraclitae, Symbiobacterium thermophilum IAM 14863, Thermaerobacter sp. FW80
Tier 1 TsFusion			
4 fusion-likeª	97-99%	77-100%	Thermaerobacter sp. PB12/4term, Thermaerobacter marianensis, Thermaerobacter sp. FW80, Firmicutes bacterium
Tier 1 TfFusion			
1 fusion-likeª	100%	95-100%	Thermincola potens
Tier 2 TmFusion / TsF	usion / TfFusion	(shared) ⁺	
500-600 predominantly fusion-like ^a	71-99%	28-69%	various species, predominantly from Alkalihalobacillus, Firmicutes, Paraburkholderia, Pseudomonas, Rhodococcus, Streptomyces, and Syntrophomonadaceae genera
Tier 3 TmFusion / TsF	usion / <i>Tf</i> Fusion	(shared) ⁺	
400-480 predominantly TAm-like ^b	41-70%	37-67%	various species, predominantly from Acidaminococcaceae, Alkaliphilus, Armatimonadetes, Clostridia, Firmicutes, Moorella, Pelotomaculum, Peptococcaceae, Syntrophomonadaceae, Thermoanaerobacter, Thermoanaerobacterium, and Thermus genera
5-20 TAm-like ^b	24-40%	41-70%	predominantly from Firmicutes

Table S8. Thermophilic fusio	on BLASTP results summary
------------------------------	---------------------------

^a entries with sequence length ranging between 650-1100 aa

^b entries with sequence length ranging between 400-600 aa

1.1.8 Residue conservation

Protein residue conservation analysis in MSA was performed using Jensen–Shannon divergence scoring method¹⁰ (Department of Computer Science and Lewis-Sigler Institute for Integrative Genomics, Princeton University, USA), employing an online server accessible at http://compbio.cs.princeton.edu/conservation/score.html.

Where the enzyme has not been previously characterised, conservation analysis is particularly useful for their activity and mutagenesis studies.

Fig. S3. *Pp***KTFusion residue conservation analysis.** Heatmap of *Pp*KTFusion residues with top 10% conservation scores. A MSA, composed of a total of 359 homologs, was used as input. Darker colour indicates greater residue conservation. Residues in bold indicate predicted active site ('A') and PLP-binding regions ('PLP'), and the catalytic residue ('Cat') (in line with AAN68390.1 NCBI entry for the enzyme). Protein residue conservation analysis in MSA was performed using Jensen–Shannon Divergence scoring method,¹⁰ employing an online server accessible at

http://compbio.cs.princeton.edu/conservation/score.html. Jensen-Shannon Divergence (JSD) method determines the probability of each residue logarithmically, by evaluating sequentially neighbouring sites and comparing distribution of residues in individual sequences to that of the entire MSA.¹¹

1.1.9 Structural homologs

To identify structural homologs or to predict protein structure (where those were not available), Phyre2¹² online protein fold recognition server (Structural Bioinformatics Group, Imperial College, London), accessible at http://www.sbg.bio.ic.ac.uk/phyre2/, was employed. AlphaFold^{13,14} (developed by DeepMind and EMBL-EBI), accessible at https://alphafold.ebi.ac.uk, was used to generate the final putative 3D protein structures. Predicted protein 3D structures were aligned with available 3D structures, using PyMOL Molecular Graphics System (Schrödinger LLC).

Table S9. PpKTFusion N- and C-terminal domain principal struct	ural homologs.
--	----------------

Structural Homolog	Organism	PDB ID (chain)	EC number ^a	Query aligned residues / coverage (%)	Seq. ID (%)
PpKTFusion N-terminal domain: 1-526 aa (526 aa)					
class-III aminotransferase, CrmG (523 aa)	Actinoalloteichus sp. WH1-2216-6	5DDW(D)⁵	2.6.1	9-524 (97%)	35%
putrescine aminotransferase, YgjG-protein a-zpa963-calmodulin complex (499 aa)	Escherichia coli	5H7D(I) ^c	2.6.1.29, 2.6.1.82	2-519 (98%)	28%
bifunctional diaminopelargonic acid aminotransferase and dethiobiotin synthetase, DAPA AT- DTBS (831 aa)	Arabidopsis thaliana	4A0R(B)	2.6.1.62; 6.3.3.3	1-515 (97%)	21%
adenosylmethionine-8-amino-7-oxononanoate aminotransferase, DAPA AT (452 aa)	Bacillus anthracis	3N5M(D)	2.6.1.62	24-516 (93%)	23%
class-III aminotransferase (458 aa)	<i>Ruegeria</i> sp. TM1040 (formerly <i>Silicibacter</i>)	3FCR(A)	2.6.1	1-516 (97%)	21%
class-III aminotransferase (472 aa)	Ruegeria pomeroyi (formerly Silicibacter)	3HMU(A)	2.6.1	1-518 (98%)	18%
omega-transaminase, CvTAm (459 aa)	Chromobacterium violaceum	4A6T(A)	2.6.1.18; 2.6.1.62	5-518 (97%)	19%
PpKTFusion C-terminal domain: 527-959 aa (433 aa)					
long-chain acyl-[acyl-carrier-protein] reductase, AAR (341 aa)	Synechococcus elongatus PCC 7942 = FACHB-805 (cyanobacteria)	6JZU(A) ^d	1.2.1.80	562-953 (90%)	25%
glutamyl-tRNA reductase, GluTR (404 aa)	Methanopyrus kandleri	1GPJ(A)	1.2.1.70	612-853 (59%) / 658-852 (48%)	29% / 32%
glutamyl-tRNA reductase, GluTR (472 aa)	Arabidopsis thaliana	4N7R(B)	1.2.1.70	614-852 (59%)	22%
N-((2S)-2-amino-2-carboxyethyl)-L-glutamate dehydrogenase, SbnB (339 aa)	Staphylococcus aureus	4MP6(A)	1.5.1.51	655-917 (65%)	12%
glutamyl-tRNA reductase, GluTR (144 aa)	Thermoplasma volcanium	30J0(A)	1.2.1.70	664-841 (43%)	16%

^a EC 2.6.1: transaminases; 2.6.1.18: β-alanine-pyruvate transaminase; EC 2.6.1.29: diamine transaminase; EC 2.6.1.62: adenosylmethionine-8-amino-7-oxononanoate transaminase; EC 2.6.1.82: putrescine-2-oxoglutarate transaminase; EC 6.3.3.3: dethiobiotin synthase (a cyclo-ligase – forms carbon-nitrogen bonds); EC 1.2.1.70: glutamyl-tRNA reductase (an oxidoreductase that acts on the aldehyde or oxo group using NADP⁺); EC 1.2.1.80: long-chain / fatty acid acyl-[acyl-carrier-protein] reductase (an oxidoreductase that acts on the aldehyde or oxo group using NADP⁺); EC 1.5.1.51: N-((2S)-2-amino-2-carboxyethyl)-L-glutamate dehydrogenase (an oxidoreductase that acts on CH-NH group using NAD⁺).

^b released in August 2016 but omitted by search algorithms until 2019. ^c released in June 2017. ^d released in April 2020.

Secondary structure and fold homology were predicted with >99% confidence over the aligned regions for all homologs. Structural homologs of the *Pp*KTFusion full sequence were analogous to that returned by the *Pp*KTFusion N-terminal domain (1-526 aa). The search did not find structural homologs for the entire *Pp*KTFusion sequence, meaning that, at the time of the analysis, there were no solved structures available for such fusion enzymes in the PDB database.

Structural Homolog	Organism	PDB ID (chain)	EC number ^a	Aligned residues / coverage (%)	Seq. ID (%)		
N-terminal domain: TmFusion 1-435 aa (435 aa) / TsFusion 1-435 aa (435 aa) / TfFusion 1-432 aa (432 aa)							
class-III aminotransferase, CrmG (523 aa)	Actinoalloteichus sp. WH1-22166	5DDW(D)⁵	2.6.1	7-430 (97%) <i>Tm</i> TAm 7-430 (97%) <i>Ts</i> TAm 3-427 (98%) <i>Tf</i> TAm	33% 33% 33%		
class-III aminotransferase, ω-TATR (451 aa)	Thermomicrobium roseum DSM 5159	6IO1(B) ^c	2.6.1	4-421 (95%) <i>Tm</i> TAm 4-421 (95%) <i>Ts</i> TAm 4-420 (96%) <i>Tf</i> TAm	35% 35% 33%		
YgjG putrescine aminotransferase-protein a-zpa963-calmodulin complex (YgjG, 499 aa)	Escherichia coli	5H7D(I) ^d	2.6.1.82; 2.6.1.29	1-433 (97%) <i>Tm</i> TAm 1-433 (99%) <i>Ts</i> TAm 4-431 (98%) <i>Tf</i> TAm	38% 38% 34%		
aminotransferase, PigE (861 aa)	Serratia sp. FS14	4PPM(B)	2.6.1	1-425 (97%) <i>Tm</i> TAm 1-424 (97%) <i>Ts</i> TAm 4-421 (96%) <i>Tf</i> TAm	41% 42% 40%		
putrescine aminotransferase, YgjG (467 aa)	Escherichia coli	4UOX(B)	2.6.1.82; 2.6.1.29	1-423 (97%) <i>Tm</i> TAm 1-423 (97%) <i>Ts</i> TAm 4-420 (96%) <i>Tf</i> TAm	38% 38% 33%		
aminoadipate semialdehyde transaminase, LysW (344 aa)	Thermus thermophilus HB8	1VEF(A)	2.6.1.11/2.6.1.118	1-418 (95%) <i>Tm</i> TAm 1-418 (95%) <i>Ts</i> TAm 17-415 (92%) <i>Tf</i> TAm	39% 38% 35%		
acetylornithine aminotransferase, ACOAT (385 aa)	Thermotoga maritima MSB8	2ORD(A)	2.6.1.11	9-421 (94%) <i>Tm</i> TAm 2-421 (96%) <i>Ts</i> TAm 7-418 (95%) <i>Tf</i> TAm	37% 37% 37%		
acetylornithine aminotransferase, ACOAT (376)	Aquifex aeolicus VF5	2EH6(A)	2.6.1.11	20-418 (91%) <i>Tm</i> TAm 19-418 (91%) <i>Ts</i> TAm 13-415 (91%) <i>Tf</i> TAm	39% 38% 37%		

Table S10. Thermophilic enzyme N-terminal domain principal structural homologs.

^a EC 2.6.1: transaminases; 2.6.1.11: acetylornithine transaminase; 2.6.1.29: diamine transaminase; EC 2.6.1.82: putrescine-2-oxoglutarate transaminase; EC 2.6.1.118: [amino group carrier protein]-γ-(L-lysyl)-L-glutamate aminotransferase;

^b released in August 2016 but omitted by search algorithms until 2019.

^c released in May 2019.

^d released in June 2017.

Structural Homolog	Organism	PDB ID (chain)	EC number ^a	Aligned residues / coverage (%)	Seq. ID (%)		
C-terminal domain: TmFusion 436-981 aa (546 aa)							
long-chain acyl-[acyl-carrier-protein] reductase, AAR (341 aa) D-3-phosphoglycerate dehydrogenase, PGDH (528 aa) glutamyl-tRNA reductase, GluTR (404 aa) NADP-dependent malic enzyme (439 aa) Adenosylhomocysteinase, AdoHcyase (466 aa) bifunctional methylenetetrahydrofolate dehydrogenase-cyclohydrolase (281 aa)	Synechococcus elongatus PCC 7942 = FACHB-805 (cyanobacteria) Mycobacterium tuberculosis Methanopyrus kandleri Pyrococcus horikoshii Ot3 Brucella abortus 2308 Mycobacterium tuberculosis	6JZU(A) ^b 1YGY(A) 1GPJ(A) 1WW8(A) 3N58(D) 2C2X(B)	1.2.1.80 1.1.1.95, 1.1.1.399 1.2.1.70 1.1.1.38 3.3.1.1 1.5.1.5/3.5.4.9	534-955 (76%) 649-955 (55%) 605-885 (51%) 661-974 (57%) 661-980 (58%) 664-888 (40%)	27% 33% 34% 24% 25% 45%		
C-terminal domain: TsFusion 436-886 aa (451 aa)							
long-chain acyl-[acyl-carrier-protein] reductase, AAR (341 aa) D-lactate dehydrogenase (329 aa) phosphite dehydrogenase (336 aa) glycerate dehydrogenase/glyoxylate reductase (311 aa) C-1-tetrahydrofolate synthase (298 aa) D-lactate dehydrogenase (335 aa)	Synechococcus elongatus PCC 7942 = FACHB-805 (cyanobacteria) Salmonella enterica subsp. enterica serovar Typhi Pseudomonas stutzeri Thermus thermophilus HB8 Trypanosoma brucei brucei TREU927 Sporolactobacillus inulinus CASD	6JZU(A) ⁶ 4CUK(A) 4E5K(C) 2CUK(C) 4CJX(A) 4XKJ(A)	1.2.1.80 1.1.1.28 1.20.1.1 1.1.1 1.5.1.5 1.1.1.28	478-860 (76%) 561-778 (48%) 592-778 (41%) 593-778 (41%) 608-793 (41%) 608-793 (47%)	28% 32% 38% 40% 39% 30%		
C-terminal domain: T/Fusion 433-902 aa (470 aa)							
long-chain acyl-[acyl-carrier-protein] reductase, AAR (341 aa) malic enzyme (487 aa) NAD-dependent malate oxidoreductase (376 aa) D-2-hydroxyisocaproate dehydrogenase, D-HICDH (333 aa) glutamyl-tRNA reductase, GluTR (404 aa) S-adenosylhomocysteine hydrolase, AdoHcyase (404 aa)	Synechococcus elongatus PCC 7942 = FACHB-805 (cyanobacteria) Entamoeba histolytica Thermotoga maritima MSB8 Lacticaseibacillus casei Methanopyrus kandleri Thermotoga maritima MSB8	6JZU(A) ^b 3NV9(A) 1VL6(A) 1DXY(A) 1GPJ(A) 3X2F(A)	1.2.1.80 1.1.1.40 1.1.1.37 1.1.1 1.2.1.70 3.3.1.1	465-870 (85%) 594-900 (64%) 594-828 (49%) 550-788 (50%) 589-800 (44%) 597-886 (61%)	28% 27% 29% 31% 25% 23%		

Table S11. Thermophilic enzyme C-terminal domain principal structural homologs.

^a EC 1.1.1: oxidoreductases acting on the CH-OH groups using NAD(P)⁺; EC 1.1.1.28: D-lactate dehydrogenase (NAD⁺); EC 1.1.1.37: malate dehydrogenase (NAD⁺); EC 1.1.1.38: malate dehydrogenase (oxaloacetate-decarboxylating) (NAD⁺); EC 1.1.1.95: phosphoglycerate dehydrogenase (NAD⁺); EC 1.1.1.39: α-ketoglutarate reductase (NAD⁺); EC 1.2.1.70: glutamyl-tRNA reductase (an oxidoreductase that acts on the aldehyde or oxo group using NADP⁺); EC 1.2.1.80: long-chain / fatty acid acyl-[acyl-carrier-protein] reductase; EC 1.5.1.5: methylenetetrahydrofolate dehydrogenase (an oxidoreductase that acts on CH-NH group using NADP⁺; EC 1.20.1.1: phosphite dehydrogenase (an oxidoreductase that acts on phosphorus or arsenic using NAD⁺); EC 3.3.1.1: adenosylhomocysteinase (a thioether/trialkylsulfonium hydrolase – acts on ether bonds); EC 3.5.4.9: methenyltetrahydrofolate cyclohydrolase (a hydrolase that acts on non-peptide forming carbon-nitrogen bonds in cyclic amidines).

1.1.10 3D Models

3D models were generated using AlphaFold (DeepMind and EMBL-EBI)^{13,14} to visualise the proximity between the TAm and AAR domain active sites. *Pp*KTFusion, *Tm*Fusion, *Ts*Fusion, and *Tf*Fusion structures were comparable but highlighted differences in the linker length and slight variations in the domain organisation, (**Fig. S4**(A)). The distance between the catalytic residues in the TAm and AAR domains, which fell within the top 10% conservation scores (**Fig. S4**(B), **Fig. S3**), was determined at ca. 50 Å.

1.1.11 Structural alignment

C-terminal domain conserved residues							
AAR (6JZU)	Pp KTFusion	<i>Tm</i> Fusion	<i>Ts</i> Fusion	<i>Tf</i> Fusion			
L4	F564	F534	F479	F465			
G99	G666	G632	G577	G565			
G130	G689	G655	G600	G588			
N131	N690	N656	N601	N589			
T134	Т693	T659	T604	T592			
G162	G721	G687	G632	G620			
G165	G724	G690	G635	G623			
D244	D860	D861	D767	D776			
C294	C910	C909	C815	C824			
E297	E913	E912	E818	E827			
¹⁶² GATGDIG ¹⁶⁸	721GAAGNVA727	687GATGAIG693	632GATGAIG638	620GATGSIG626			

Table S12. Results of *Pp*KTFusion conserved residue mapping to AAR and thermophilic homologs through a 3D structure alignment.

Residue C910 was among residues with the top 10% conservation scores in *Pp*KTFusion (**Fig. S3**). Mapping primary sequence conserved residues from the *Pp*KTFusion C-terminal domain back onto the AAR sequence showed that 9 out of 10 residues were fully conserved, despite the low (25%-28%) primary sequence similarity, (**Table S12**).

1.2 Protein expression and purification

1.2.1 Protein expression – general protocol

E. coli BL21(DE3) and Rosetta[™] 2(DE3) glycerol stocks (50 μL) containing plasmids with target genes were inoculated in 5-10 mL of LB or TB in 50 mL Falcon tubes supplemented with an appropriate antibiotic (kanamycin at 50 μg.mL⁻¹ final concentration for pET-28a(+) plasmids in *E. coli* BL21(DE3); or kanamycin at 50 μg.mL⁻¹ and chloramphenicol at 25 μg.mL⁻¹ final concentration to maintain pET-28a(+) and the host's pRARE2 plasmid, in Rosetta[™] 2(DE3)). Cultures were incubated in a shaking incubator at 37 °C, 250 rpm, overnight. The following day, these starter cultures were used to inoculate 100-400 mL of LB or TB in 2 L baffled conical flasks at 1-2% v.v⁻¹, adding antibiotic as stated and incubating at 30-37 °C, 180-230 rpm, until OD₆₀₀ 0.4-0.8 (measured by Jenway 7315 spectrophotometer in 1 mL aliquots). Cultures were induced with 1 mM IPTG and incubated for 5-72 hours at 18-37 °C, 180-230 rpm, for protein expression.

Thirty minutes prior to harvesting, cultures were supplemented with a co-factor at 0.1-0.5 mM final concentration (PLP for *Cv*TAm, *Pp*KTTAm, *Tm*TAm, *Ts*TAm, *Tf*TAm; PLP and NAD⁺/NADP⁺ for *Pp*KTFusion, *Tm*Fusion, *Ts*Fusion, *Tf*Fusion; and NAD⁺/NADP⁺ for *Pp*KTDHR, *Tm*DHR, *Ts*DHR, *Tf*DHR. A small amount of culture was removed for whole cell SDS-PAGE analysis. Then, cultures were pelleted by centrifugation at 10,000 x g for 10 mins at 4 °C in an Eppendorf centrifuge 5810R or Beckman Coulter Avanti J-20 XPI Centrifuge. Pellets were either used immediately or stored at -80 °C until needed. Protein size was estimated by ExPASy ProtParam online tool. Expression details concerning individual enzyme sets are provided in Figures.

1.2.2 Lysate preparation by sonication

Cell pellets were resuspended in IMAC1 buffer (20 mM NaPi, 0.5 M NaCl, 5 mM imidazole pH 7.4), for protein purification at 1:25 ratio of buffer to culture volume, adding appropriate co-factors to 0.1 mM and mixing to homogeneity on ice. The cell suspension was sonicated on ice in 7.5 mL batches 10 s ON 10 s OFF for ~20 cycles, or until the suspension became homogeneous, at 8-micron amplitude using MSE Sanyo Soniprep150. Lysed cells were spun down at 10,000 x g for 30-45 mins at 4 °C, after which the supernatant, or soluble protein fraction, was immediately transferred to new tubes. Both soluble (supernatant) and insoluble (pelleted debris) fractions were used for SDS-PAGE analysis. The clarified cell lysate was used for protein purification.

1.2.3 Enzyme purification

The clarified cell lysate was loaded onto a 10 mL column containing 7.5 mL Ni Sepharose[®] 6 Fast Flow (Cytiva), for His-tag gravity-flow purification. The column was washed with 1 x cv of IMAC1 (20 mM NaPi, 0.5 M NaCl, 5 mM imidazole, pH 7.4), followed by 5 x cv of IMAC2 (20 mM NaPi, 0.5 M NaCl, 20 mM imidazole, pH 7.4), 5 x cv IMAC3 (20 mM NaPi, 0.5 M NaCl, 50 mM imidazole, pH 7.4), and 2 x cv IMAC4 (20 mM NaPi, 0.5 M NaCl, 100 mM imidazole, pH 7.4). The protein was eluted with 1-2 x cv of IMAC5 (20 mM NaPi, 0.5 M NaCl, 500 mM imidazole, pH 7.4). A VM20 Vacuum Manifold (Sigma-Aldrich), attached to a vacuum tap, was used to speed up the washing steps (IMAC1-IMAC4), utilizing vacant butterfly valves for regulation of the suction speed. Collection of the elution fraction was initiated once protein presence was confirmed by the Bradford reagent (detected by mixing 5 μ L from the eluting drops with 250 μ L of the reagent). The purified enzyme was supplemented with a co-factor(s) and precipitated using ammonium sulfate to 70-80% saturation, then stored at 4 °C until needed.

The observed molecular weight of the truncated thermophilic TAms was somewhat lower than predicted by the ProtParam tool, presumably due to a high content of non-polar residues¹⁵ (58% in *Tm*TAm, 58% in *Ts*TAm, and 54% in *Tf*TAm), (**Fig. S6, Fig. S7**, **Fig. S8**, and **Fig. S18**, **Fig. S21**, and **Fig. S24**).

Fig. S6. SDS-PAGE gel of *Tm*Fusion, *Tm*TAm, and *Tm*DHR expression. Denaturing polyacrylamide gels of (A) *Tm*Fusion (107 kDa, 1001 aa), (B) *Tm*TAm (~43 kDa (observed), 50 kDa (predicted), 455 aa), and (C) *Tm*DHR (60 kDa, 567 aa) showing the respective enzyme bands in whole cells, clarified cell lysate, insoluble fraction, and the purification steps (indicated by red arrows). *Tm*Fusion and *Tm*TAm were expressed in *E. coli* BL21(DE3), *Tm*DHR was expressed in *E. coli* Rosetta[™] 2(DE3), inducing with 1 mM IPTG at 0.5-0.6 OD₆₀₀ (*Tm*Fusion and *Tm*TAm) or 0.8-0.9 OD₆₀₀ (*Tm*DHR), and incubating at 30/37 °C for 72 hours at 180 rpm. Sorbitol (0.5 M)¹⁶ was added to *Tm*Fusion culture at scale up. PLP and NAD(P)^{+a} (at 0.1 mM) co-factors were added 30 minutes prior to cell harvesting. Lysates were prepared using sonication, purifying enzymes from the soluble fraction via a nickel column. Protein size for *Tm*Fusion, *Tm*TAm and *Tm*DHR was estimated by ExPASy ProtParam online tool. ^a PLP and NAD(P)⁺ for *Tm*Fusion, PLP for *Tm*TAm; NAD(P)⁺ for *Tm*DHR.

Fig. S7. SDS-PAGE gel of TsFusion, TsTAm, and TsDHR expression. Denaturing polyacrylamide gels of (A) TsFusion (98 kDa, 906 aa), (B) TsTAm (~43 kDa (observed), 50 kDa (predicted), 455 aa), and (C) TsDHR (51 kDa, 472 aa) showing the respective enzyme bands in whole cells, clarified cell lysate, insoluble fraction, and the purification steps (indicated by red arrows). TsFusion and TsTAm were expressed in *E. coli* RosettaTM 2(DE3), TsDHR was expressed in *E. coli* BL21(DE3), inducing with 1 mM IPTG at 0.5-0.6 OD₆₀₀ (TsFusion, TsTAm, and TsDHR) and incubating at 37 °C for 72 hours at 180 rpm. Sorbitol (0.5 M)¹⁶ was added to TsFusion and TsTAm cultures at scale up. PLP and NAD(P)^{+a} (at 0.1 mM) co-factors were added 30 minutes prior to cell harvesting. Lysates were prepared using sonication, purifying enzymes from the soluble fraction via a nickel column. Protein size for TsFusion, TsTAm and TsDHR was estimated by ExPASy ProtParam online tool. ^a PLP and NAD(P)⁺ for TsFusion, PLP for TsTAm; NAD(P)⁺ for TsDHR.

Fig. S8. SDS-PAGE gel of *Tf***Fusion,** *Tf***TAm, and** *Tf***DHR expression**. Denaturing polyacrylamide gels of (A) *Tf***F**usion (101 kDa, 922 aa), (B) *Tf***TAm** (~43 kDa (observed), 50 kDa (predicted), 452 aa), and (C) *Tf***DHR** (54 kDa, 491 aa) showing the respective enzyme bands in whole cells, clarified cell lysate, insoluble fraction, and the purification steps (indicated by red arrows). *Tf***F**usion and *Tf***TAm** were expressed in *E. coli* RosettaTM 2(DE3), *Tf*DHR was expressed in *E. coli* BL21(DE3), inducing with 1 mM IPTG at 0.5-0.6 OD₆₀₀ (*Tf***F**usion, *Tf***TAm**, and *Tf***DHR**) and incubating at 37 °C for 72 hours at 180 rpm. Sorbitol (0.5 M)¹⁶ was added to *Tf***F**usion and *Tf***TAm** cultures at scale up. PLP and NAD(P)^{+a} (at 0.1 mM) co-factors were added 30 minutes prior to cell harvesting. PLP and NAD(P)^{+a} (at 0.1 mM) co-factors were added 30 minutes prior to cell harvesting. Lysates were prepared using sonication, purifying enzymes from the soluble fraction via a nickel column. Protein size for *Tf*Fusion, *Tf*TAm and *Tf*DHR was estimated by ExPASy ProtParam online tool. ^a PLP and NAD(P)⁺ for *Tf*Fusion, PLP for *Tf*TAm; NAD(P)⁺ for *Tf*DHR.

1.3 Enzyme assays

1.3.1 Colorimetric assays with purified enzymes

Qualitative screening of transaminase activity was carried out via colorimetric assays using Ni-column-purified enzymes. Reactions were performed at 200 μ L in 96-well plates at 30 °C (*Pp*KTFusion, *Pp*KTTAm, *Cv*TAm) or at 50 °C (*Tm*Fusion, *Ts*Fusion, *Tf*Fusion, *Tm*TAm, *Ts*TAm, *Tf*TAm) for 18 hours. Reactions contained 50 mM HEPES buffer at pH 7.5, 25 mM 2-(4nitrophenyl)ethan-1-amine hydrochloride **44** as amine donor, 10 mM amino acceptor / substrate (keto acids: pyruvate **3**, α ketoglutarate **4**, HPA **5**, 2-ketobutyrate **17**, 4-hydroxyphenylpyruvate **18**, 4-methyl-2-oxovalerate **19**, levulinate **20**, oxaloacetate **21**; aldehydes: benzaldehyde **1**, hexanal **2**, 2-phenylacetaldehyde **12**, 3-phenylproprionaldehyde **13**, butanal **14**, trans cinnamaldehyde **15**, vanillin **16**; ketones: ethyl acetoacetate **6**, acetophenone **7**, 1-indanone **8**, 2-heptanone **9**, 1,2cyclohexanedione **10**, ethyl 4-oxocyclohexanecarboxylate **11**, 4-phenylbutanone **22**, cyclohexanone **23**, 3-acetyl-1-propanol **24**), 1.0 mM PLP, DMSO at 0-10% v.v⁻¹, and purified enzyme at 0.01 mg.mL⁻¹. Reactions were initiated by the addition of enzyme and performed in either duplicate or triplicate. Control reactions were prepared as above but lacked an enzyme (C1). All chemical stocks were prepared at 10X concentration in 50% or 100% DMSO (except **3**, **21** and **44**, which were prepared in 100% dH₂O), to ensure solubility, resulting in 0%, 5% or 10% v.v⁻¹ DMSO final reaction concentration.

1.3.2 End-point assays

Transaminase activity with various amine donors was determined by analysis of the conversion of 3-phenylpropionaldehyde **13** to 3-phenyl-1-propylamine **43**, using HPLC. Reactions were performed at 200 μ L in 96-well plates at 30 °C (*Pp*KTFusion, *Pp*KTTAm, *Cv*TAm) or at 50 °C (*Tm*Fusion, *Ts*Fusion, *Tf*Fusion, *Tm*TAm, *Ts*TAm, *Tf*TAm) for 18 hours. Reactions contained 50 mM HEPES buffer at pH 7.5, 25 mM amine donor (1-aminoindan **25**, 2-aminoheptane **26**, 2-phenylethylamine **27**, 4-phenylbutan-2-amine **28**, 6-aminohexanoic acid **29**, benzhydrylamine **30**, benzylamine **31**, cyclohexanamine **32**, D-alanine **33**, ethyl 3-aminobutyrate **34**, L-alanine **35**, L-glutamate **36**, L-serine **37**, (*S*)-MBA **38**, L-lysine **39**, L-arginine **40**, L-aspartate **41**, L-glutamine **42**), 10 mM amine acceptor / substrate (**13**), 1.0 mM PLP, DMSO at 10-20% v.v⁻¹, and purified enzyme at 0.05 mg.mL⁻¹. Reactions were prepared as above but lacked an enzyme (C1) – these were subtracted from enzyme assays to remove any background signals. All amine donor stocks were prepared at 10X concentration in 50% or 100% DMSO (except **33**, **35**, **36**, **37**, **39**, **40**, **41**, and **42**, which were prepared in 100% dH₂O). Amine acceptor 3-phenylpropionaldehyde **13** was prepared at 10X in 100% DMSO, resulting in 10% or 20% v.v⁻¹ DMSO final reaction concentration. Product yield in samples was determined using the 3-phenyl-1-propylamine calibration curve (**Fig. S9**). Errors are reported as standard deviations.

Fig. S9. Typical 3-phenyl-1-propylamine HPLC standard curve used to determine product concentration in samples. y = 79.043x; $R^2 = 0.9986$. Experiments were performed in duplicate. SD <2.6, except measurements at 1.5 mM, where SD was 17.

Fig. S10. Colour intensity development in control samples. P_p KTFusion (A(i))/ P_p KTTAm (A(ii)), TmFusion (B(i))/TmTAm (B(ii)), TsFusion (C(i))/TsTAm (C(ii)), and TfFusion (D(i))/TfTAm (D(ii)), and CvTAm (E). Assays contained 50 mM HEPES buffer at pH 7.5, 25 mM 2-(4-nitrophenyl)ethan-1-amine **44** as amine donor, 10 mM substrate pyruvate **3**, and purified enzyme at 0.01 mg.mL⁻¹. Assays were performed in triplicate and run alongside no enzyme C1, no substrate C2, and no amine donor C3 controls. Reactions were initiated by the addition of enzyme and run at 30 °C (PpKTFusion, PpKTTAm, CvTAm) or at 50 °C (TmFusion, TmTAm, TsFusion, TsTAm, TfFusion, and TfTAm) for 18 hours. The dark red colouration in samples indicates conversion ≥20%.

1.3.3 Thermostability assays

Transaminase activity was determined by analysing the conversion of 3-phenylpropionaldehyde **13** to 3-phenyl-1propylamine **43**, employing L-glutamate **36** as an amine donor, using HPLC. Reactions were performed in 200 μ L volumes in 96-well plates at 50 °C for 2 hours. Each reaction contained 50 mM HEPES buffer at pH 7.5, 175 mM L-glutamate **36**, 52.5 mM 3-phenylpropionaldehyde **13**, 0.1 mM PLP, 0.1 mM NADP⁺, 10.5% v.v⁻¹ DMSO, and purified enzyme *Tf*Fusion at 0.1 mg.mL⁻¹. To measure the enzyme's residual activity (A_{Res}) following heat treatment, the enzyme was incubated with cofactors at 60 °C and 70 °C for 30, 60 and 120 minutes, then cooled on ice for 2 hours prior to initiating reactions. The enzyme's initial activity (A₀) was measured using untreated enzyme. To run assays, all reaction solutions, except for the enzyme, were equilibrated to 50 °C. Reactions were initiated by the addition of the enzyme and terminated by freezing at -80 °C; and performed in triplicate. Control reactions, prepared as above but without enzyme, were subtracted from enzyme assays to remove background signals. The amine donor stock was prepared at 1 M in 100% dH₂O. The amine acceptor, 3phenylpropionaldehyde **13**, was prepared at 500 mM in 100% DMSO, resulting in 10.5% DMSO final reaction concentration. Product yield in samples was determined using a 3-phenyl-1-propylamine calibration curve. Errors are reported as standard deviations, (**Fig. S11**).

Fig. S11. Thermostability analysis of *T***fFusion**. The graph is showing a decrease in the ratio of residual activity (A_{res}) relative to the initial activity (A_0) following incubation at 60 °C and 70 °C over various time periods.

1.4 Analytical HPLC

Analytical HPLC was performed using a DionexTM UltiMateTM 3000 HPLC System, a DionexTM UltiMateTM 3000 Autosampler, a DionexTMUltiMateTM 3000 RS Pump, a UltiMateTM 3000 RS Diode Array Detector, and a DionexTM UltiMateTM 3000 Column Compartment (ThermoFisher Scientific). Reverse-phase chromatography method was used for quantitative achiral analysis of end-point assay reaction components. Compound separation was achieved employing two mobile phases – (a) dH₂O with 0.1% v.v¹ TFA, and (b) acetonitrile – with ACE 5 C18 column (150 × 4.6 mm) (**Fig. S12**), at 1.0 mL.min⁻¹ flow rate. The injection volume was 20 μ L, with column oven at 30 °C and sample chamber at 4 °C. Standards (see **Fig. S9**) were run to determine and validate compound concentrations and retention times. A 20-minute method, with UV absorbance at 210 nm, was used with all transaminase assays.

Fig. S12. Analytical HPLC method.

1.5 Kinetic parameters of PpKTFusion/PpKTTAm and TfFusion/TfTAm

Kinetic parameters were calculated by fitting data to Michaelis-Menten or substrate inhibition models using non-linear regression (least-squares) analysis in Prism 9 (GraphPad Software LLC). For both models, the confidence interval for the interpolation of the unknowns from a standard curve was set to 95%. For the Michaelis-Menten model, to achieve the best fit, the convergence criteria was set to strict, selecting $1/Y^2$ weighting method. For the substrate inhibition model, to achieve the best fit, the convergence criteria was set to medium (default), and no weighting was applied (default). For both models, the mean Y values of each point was used, (Fig. S13).

2. Protein sequences

2.1 Pseudomonas putida KT2440 PP_2782

2.1.1 PpKTFusion protein sequence

MGSSHHHHHHSSGLVPRGSHMTVMDYRDFVRPKFVGLLQALGLECEFERALGSQLFYRNPKGDMVTVTDFLGGYGAALFGH NDPQFVDQLCALLRSDVPFNAQMSIRGAAGQLGRALSDAFNRELKNTERYISTFSNSGAEAVEIAVKHAEFRRQKSLQKQF DDIDFTLASLTASEHAYRELDVADLDLPAGVLPATLNSVTLRQVVEAVRQHNLAQLHIEPVFVALRGSFHGKLVNTVQLTY GRQYRAPFARFGLNVEFIDPQQPHQLQELPARHTHHWLSLQWDGEHLHVLQLPFSAITAVLMEPIQGEGGINEFAAEFYLG LRKLCNEQQCPLVVDEVQSGFGRAGTFLASSQFNLQGDYYCLSKALGGGLMKIAATVIRSSHYEGEFSYIHSSTFAEDDPS CHIALSALRRLFADDDAMLKDIRTKGAYLKASLNELKMAYPDVIADVRGRGLLVGLELHDLSVSSSLVQASAQYNDALGYL IAGYLLQFEALRVAPSGSNSNVIRLEPPACITLGEIDKLIAALQRVCDMLRRGDALPLAA<mark>SICADSMPALPARQDDFRVTE</mark> FVENRDAKV</mark>EVVARVAFINHLIDADILGDVDPSLAALSPEQKRTFINRTKPERRAVPVGPVIIRSRLGMAVEFTLYPLCMD SDAMAEYIRSGDLDSIREEVGRRVTDARADGCSIAGLGMYTSIVTNNCQALKIADMALTSGNALTIGMGLEAIEQGCVQQG LALCEQTAAVVGAAGNVASTYASVLSATVDHLILIGSGRDGSVRRLEKTAQQIYADAARSILKGTAEHDRLAQRLLTLDGF RGLLHSHGQKADLGLHIARLVDERLGANAFITVTNDLDAIKGARIVLCAANAPQPFLGAEHFAERSVICDIAVPLNVHQDL PSQREDVLYMHGGIVQTPFDDGLAPNVRAYLKKGQLYACMAESVLMGLSGMSQHGSYGDISREQVQQVRALAATHGFTLAQ FKTONSL

Fig. S14. *Pp***KTFusion protein sequence**. The protein sequence of *Pp*KTFusion with a N-terminal His₆-tag. The start methionine (M) residue is shown in bold. The N-terminal His₆-tag is highlighted in green; the thrombin peptide sequence is highlighted in turquoise. The proposed linker region is highlighted in red.

2.1.2 PpKTTAm protein sequence

MGSSHHHHHHSSGLVPRGSHMTVMDYRDFVRPKFVGLLQALGLECEFERALGSQLFYRNPKGDMVTVTDFLGGYGAALFGH NDPQFVDQLCALLRSDVPFNAQMSIRGAAGQLGRALSDAFNRELKNTERYISTFSNSGAEAVEIAVKHAEFRRQKSLQKQF DDIDFTLASLTASEHAYRELDVADLDLPAGVLPATLNSVTLRQVVEAVRQHNLAQLHIEPVFVALRGSFHGKLVNTVQLTY GRQYRAPFARFGLNVEFIDPQQPHQLQELPARHTHHWLSLQWDGEHLHVLQLPFSAITAVLMEPIQGEGGINEFAAEFYLG LRKLCNEQQCPLVVDEVQSGFGRAGTFLASSQFNLQGDYYCLSKALGGGLMKIAATVIRSSHYEGEFSYIHSSTFAEDDPS CHIALSALRRLFADDDAMLKDIRTKGAYLKASLNELKMAYPDVIADVRGRGLLVGLELHDLSVSSSLVQASAQYNDALGYL IAGYLLQFEALRVAPSGSNSNVIRLEPPACITLGEIDKLIAALQRVCDMLRRGDALPLAA

Fig. S15. *Pp***KTTAm protein sequence**. The protein sequence of the *Pp*KTFusion N-terminal domain (1-526 aa) (*Pp*KTTAm) with a N-terminal His₆-tag. The start methionine (M) residue is shown in bold. The N-terminal His₆-tag is highlighted in green; the thrombin peptide sequence is highlighted in turquoise.

2.1.3 PpKTDHR protein sequence

MGSSHHHHHHHSSGLVPRGSHMGICADSMPALPARQDDFRVTEPVENRDAKVEVVARVAFINHLIDADILGDVDPSLAALSP EQKRTFINRTKPERRAVPVGPVIIRSRLGMAVEFTLYPLCMDSDAMAEYIRSGDLDSIREEVGRRVTDARADGCSIAGLGM YTSIVTNNCQALKIADMALTSGNALTIGMGLEAIEQGCVQQGLALCEQTAAVVGAAGNVASTYASVLSATVDHLILIGSGR DGSVRRLEKTAQQIYADAARSILKGTAEHDRLAQRLLTLDGFRGLLHSHGQKADLGLHIARLVDERLGANAFITVTNDLDA IKGARIVLCAANAPQPFLGAEHFAERSVICDIAVPLNVHQDLPSQREDVLYMHGGIVQTPFDDGLAPNVRAYLKKGQLYAC MAESVLMGLSGMSQHGSYGDISREQVQQVRALAATHGFTLAQFKTQNSL

Fig. S16. *Pp***KTDHR protein sequence**. The protein sequence of the *Pp*KTFusion C-terminal domain (527-959 aa) (*Pp*KTDHR) with a N-terminal His_{6} -tag. The start methionine (M) residue is shown in bold. The N-terminal His_{6} -tag is highlighted in green; the thrombin peptide sequence is highlighted in turquoise. The proposed linker region is highlighted in red.

2.2 Thermaerobacter marianensis DSM 12885 Tmar_2123

2.2.1 TmFusion protein sequence

MGSSHHHHHHSSGLVPRGSHMHPFRQYVNPHLGELLEQIQMDKRFVRGQGCWLWDEDGRRYLDFVAAYGALPFGFNPPEIW AALEEARRQGEPSFIQPSFLNAAGELARRLIEVAPPGLRYVTFANSGAEAVEAAIKLARAATGRPRILSTENAFHGKTFGA LSATHRAAYQDVFFAPAEGFDKVPYGDVAALEQALAARPGEYAAFLVEPIQGEGGIVVPPPGYLRAAREICRRHGVLFIVD EVQTGLGRTGALFACQAEGVTPDAMTLAKALGGGLMPIGAVLCTEEVYTEEFATKHSSTFAGNTLACRAGLAALDLLTRDD QALVRHVAETGEYLRQGLLAIQRRHPRVIREVRGRGFMLGLQFGVTRETFPGNLLGVMGEQELLTPVIASYLLNVEGLRVA PTLNGADVIRIEPPLIATREECDYALAAIERVVDLIDREDTAGLLRHLVGQGRVGQDRHGATSPDHGMNGRSAAIGRVVVG RSGTGVTRDGDGASRRATGAGELPATGRGGQVGTGTVHGGASQTPAAGSSREEPATPSDDPAEGRFAFLVHPVDLENYPEF DPGLAAFTREELADLAGRWNHLLKPFRIGQTRVVSTCGRTAYGEFYVVPRTADELLAMPAQEAVAAVKEALDLARDGGARI VGLGAYTSVVTRGGLHLRDAGVALTTGNSFTVAAAVEAIDEATRRLGFPLAESTVAVVGATGAIGRATALLLGPRVQRLLL IGNPARPEQSRRRLLRVAGEICRHVLVSAGRPSPVGRAGRVDDGDRDQENHGAPLGGSGAAFFNRFGTAEAGELAPLAAQL LDFGGWPNADAPVEEFVRRLETWMARGQCPLVITTDLDAMLPLADVVTATSSTAHLVTPGNVKFGAVVCDLSRPPNVSRE VRDARPDVLVIDGGVIEVPGRPSLGWNFGFERGLVYACMAETMILALEHHYQHTSLGADLNLETILWLEELARKHGFRLAQ LRSFDRPLPDEAWERLVAARSAVLGSAAR

Fig. S17. *Tm***Fusion protein sequence**. The protein sequence of *Tm*Fusion with a N-terminal His_6 -tag. The start methionine (M) residue is shown in bold. The N-terminal His_6 -tag is highlighted in green; the thrombin peptide sequence is highlighted in turquoise.

2.2.2 TmTAm protein sequence

MGSSHHHHHHSSGLVPRGSHMHPFRQYVNPHLGELLEQIQMDKRFVRGQGCWLWDEDGRRYLDFVAAYGALPFGFNPPEIW AALEEARRQGEPSFIQPSFLNAAGELARRLIEVAPPGLRYVTFANSGAEAVEAAIKLARAATGRPRILSTENAFHGKTFGA LSATHRAAYQDVFFAPAEGFDKVPYGDVAALEQALAARPGEYAAFLVEPIQGEGGIVVPPPGYLRAAREICRRHGVLFIVD EVQTGLGRTGALFACQAEGVTPDAMTLAKALGGGLMPIGAVLCTEEVYTEEFATKHSSTFAGNTLACRAGLAALDLLTRDD QALVRHVAETGEYLRQGLLAIQRRHPRVIREVRGRGFMLGLQFGVTRETFPGNLLGVMGEQELLTPVIASYLLNVEGLRVA PTLNGADVIRIEPPLIATREECDYALAAIERVVDLIDREDTAGLLRHLVG

Fig. S18. *Tm***TAm protein sequence**. The protein sequence of the *Tm*Fusion N-terminal domain (1-435 aa) (*Tm*TAm) with a N-terminal His₆-tag. The start methionine (M) residue is shown in bold. The N-terminal His₆-tag is highlighted in green; the thrombin peptide sequence is highlighted in turquoise.

2.2.3 TmDHR protein sequence

MGSSHHHHHHHSSGLVPRGSHMQGRVGQDRHGATSPDHGMNGRSAAIGRVVVGRSGTGVTRDGDGASRRATGAGELPATGRG GQVGTGTVHGGASQTPAAGSSREEPATPSDDPAEGRFAFLVHPVDLENYPEFDPGLAAFTREELADLAGRWNHLLKPFRIG QTRVVSTCGRTAYGEFYVVPRTADELLAMPAQEAVAAVKEALDLARDGGARIVGLGAYTSVVTRGGLHLRDAGVALTTGNS FTVAAAVEAIDEATRRLGFPLAESTVAVVGATGAIGRATALLLGPRVQRLLLIGNPARPEQSRRLLRVAGEICRHVLVSA GRPSPVGRAGRVDDGDRDQENHGAPLGGSGAAFFNRFGTAEAGELAPLAAQLLDFGGWPNADAPVEEFVRRLETWMARGQC PLVITTDLDAMLPLADVVVTATSSTAHLVTPGNVKFGAVVCDLSRPPNVSREVRDARPDVLVIDGGVIEVPGRPSLGWNFG FERGLVYACMAETMILALEHHYQHTSLGADLNLETILWLEELARKHGFRLAQLRSFDRPLPDEAWERLVAARSAVLGSAAR

Fig. S19. *Tm***DHR protein sequence**. The protein sequence of the *Tm*Fusion C-terminal domain (436-981 aa) (*Tm*DHR) with a N-terminal His₆-tag. The start methionine (M) residue is shown in bold. The N-terminal His₆-tag is highlighted in green; the thrombin peptide sequence is highlighted in turquoise.

2.3 Thermaerobacter subterraneus DSM 13965 ThesuDRAFT_00745

2.3.1 TsFusion protein sequence

MGSSHHHHHHSSGLVPRGSHMHPFRQYVNPHLAELLEQIQMDKRFVRGEGCWLWDDQGRRYLDFVAAYGALPFGFNPPEIW AALEEARHRGEPSFVQPSFLNAAGELARRLIEVAPPGLRYVTFANSGAEAVEAAIKLARAATGRPRILSTDNGFHGKTFGA LSATHRAAYQDAFFAPAEGFDKVPYGDLEALERALAARPGEYAAFLVEPIQGEGGIVVPPPGYLREAREVCRRHGVLFIAD EVQTGLGRTGVLFACQAEGVTPDAITLAKALGGGLMPIGAVLCTEEVYTEEFATKHSSTFAGNTLACRAGLAALDLLTRDE QALVRHVAETGEYLRQGLLAIQRRHPRVIREVRGRGFMLGIQFGVDREAFPGNLLGVMGEQELLTPVIASYLLNVEGLRVA PTLNGADVIRIEPPLIATRAECDYALAAIERVVELIDRDDTAALLRHLVSPQATTGQAVDRPARHQPALLAVRSREPEEAV APSGDPREGRFAFLVHPVDLENYPEFDPSLAAFSRAELEELAGRWNHLLKPFRIGRTRVVSAAGATAYGEFYAVPRTADEF LAMPQAEAVAEIEEAIELARENGARIVGLGAYTSVVTRGGLHLRDAGVALTTGNSFTVVAAVEAIAEASRRLGFPLGQGTV AVVGATGAIGRATALLLAGEVRRLVLIGNPARPEQSRRRLLRVAADLARHVLSLAASGRPLGPLAQVLVEFGGWPDPAEPA EAFLPRLEAWLAAGRCPLVVTTDLDAMLPQADVVVTATSSTAHLVTPRNVKFGAVVCDLSRPPNVSREVGDARPDVLVIDG GVIEVPGRPSMGWNFGFERGLVYACMAETMMLALEHHYRHTSLGADLNLETILWLKDLARQHGFRLAELRSFDRPLPAEAW ERVLAARSALGTAAR

Fig. S20. *Ts***Fusion protein sequence**. The protein sequence of *Ts*Fusion with a N-terminal His_6 -tag. The start methionine (M) residue is shown in bold. The N-terminal His_6 -tag is highlighted in green; the thrombin peptide sequence is highlighted in turquoise.

2.3.2 TsTAm protein sequence

MGSSHHHHHHSSGLVPRGSHMHPFRQYVNPHLAELLEQIQMDKRFVRGEGCWLWDDQGRRYLDFVAAYGALPFGFNPPEIW AALEEARHRGEPSFVQPSFLNAAGELARRLIEVAPPGLRYVTFANSGAEAVEAAIKLARAATGRPRILSTDNGFHGKTFGA LSATHRAAYQDAFFAPAEGFDKVPYGDLEALERALAARPGEYAAFLVEPIQGEGGIVVPPPGYLREAREVCRRHGVLFIAD EVQTGLGRTGVLFACQAEGVTPDAITLAKALGGGLMPIGAVLCTEEVYTEEFATKHSSTFAGNTLACRAGLAALDLLTRDE QALVRHVAETGEYLRQGLLAIQRRHPRVIREVRGRGFMLGIQFGVDREAFPGNLLGVMGEQELLTPVIASYLLNVEGLRVA PTLNGADVIRIEPPLIATRAECDYALAAIERVVELIDRDDTAALLRHLVS

Fig. S21. *Ts***TAm protein sequence**. The protein sequence of the *Ts*Fusion N-terminal domain (1-435 aa) (*Ts*TAm) with a N-terminal His₆-tag. The start methionine (M) residue is shown in bold. The N-terminal His₆-tag is highlighted in green; the thrombin peptide sequence is highlighted in turquoise.

2.3.3 TsDHR protein sequence

MGSSHHHHHHSSGLVPRGSHMPQATTGQAVDRPARHQPALLAVRSREPEEAVAPSGDPREGRFAFLVHPVDLENYPEFDPS LAAFSRAELEELAGRWNHLLKPFRIGRTRVVSAAGATAYGEFYAVPRTADEFLAMPQAEAVAEIEEAIELARENGARIVGL GAYTSVVTRGGLHLRDAGVALTTGNSFTVVAAVEAIAEASRRLGFPLGQGTVAVVGATGAIGRATALLLAGEVRRLVLIGN PARPEQSRRRLLRVAADLARHVLSLAASGRPLGPLAQVLVEFGGWPDPAEPAEAFLPRLEAWLAAGRCPLVVTTDLDAMLP QADVVVTATSSTAHLVTPRNVKFGAVVCDLSRPPNVSREVGDARPDVLVIDGGVIEVPGRPSMGWNFGFERGLVYACMAET MMLALEHHYRHTSLGADLNLETILWLKDLARQHGFRLAELRSFDRPLPAEAWERVLAARSALGTAAR

Fig. S22. *Ts***DHR protein sequence**. The protein sequence of the *Ts*Fusion C-terminal domain (436-886 aa) (*Ts*DHR) with a N-terminal His₆-tag. The start methionine (M) residue is shown in bold. The N-terminal His₆-tag is highlighted in green; the thrombin peptide sequence is highlighted in turquoise.

2.4 Thermincola ferriacetica Z-0001 Tfer_2018

2.4.1 TfFusion protein sequence

MGSSHHHHHHSSGLVPRGSHMKFSSLNPTMDKLFECFKLDVAYVKGEGTYLYDQAGNKYLDFIAQYGAVPFGYNPPELVAA AKKYFDLSLPSMVQPSIPVKAVELAEMLLQLAPGEMAQATFCQSGAEAVEVAIKLARSTTGKPKILSTKNSFHGKTMGALS ATGRDVYQKPFFTPVPGFEHIPFGDLDMLENKMRTEGKQIAAFLVEPIQGEGGIIVPPEGYLKNAEIICRKYGVLLAVDEI QTGLGRTGELFACDREGVEPDILLLSKALGGGLVPLGVCLSTRQAWNEEFGRLHSSTFANNNFTCAIGLAVLNKLLENGRQ LINNAKSAGNYLLKNLEDINRQYPGVIKEIRGRGLMLGLEFNEFDGSESFSMKYLAEQGGFSPLLAGYLLNVHKVRVAPFL NNPMTLRLQPSLTVATVEIDRALHGLERVVKALYYQDHCELYSYIIGKEPGPIRDFRSEKKAVTGSELLPEEKPTEKFAFL IHYPSSEDVIKNNPSFKKASKDILEKLIDWEASLDAEPEVIVHLPAIKSKAGKIAEGWLIGIPYSGRHMMEMPRKDAVKVL VTALDKAKALGARIVGLGAYTSVVSRGGSDLQGKGIAVTSGNSYTIATAFDALIEGARLMGIDPAESTGCVIGATGSIGRV CAILLAEEIDKLVLVGNPEKEKTSLRRMEQLADEIYTRAFREILAYKGKVAKIKGIAKWLKGFLDRKRKDDPEVWNKLLTA LENQGFSINGYIHENLAAKGKYSNPPVKITVNIKQALLQSDLIISASNSTNHLIGPGHLKPGSVICDVARPPDVSEAVLEQ RKDVLVIEGGLVQYPDDICFGQNMGYEPGVNMACLSETMLLALEGTYRDFSIGLKIPVENVYYLRELAQRHGFKLATPWNK NGGVTPEVARMIKEAALKNENVEKIKTPKSS

Fig. S23. *Tf***Fusion protein sequence**. The protein sequence of *Tf***F**usion with a N-terminal His₆-tag. The start methionine (M) residue is shown in bold. The N-terminal His₆-tag is highlighted in green; the thrombin peptide sequence is highlighted in turquoise.

2.4.2 TfTAm protein sequence

MGSSHHHHHHSSGLVPRGSHMKFSSLNPTMDKLFECFKLDVAYVKGEGTYLYDQAGNKYLDFIAQYGAVPFGYNPPELVAA AKKYFDLSLPSMVQPSIPVKAVELAEMLLQLAPGEMAQATFCQSGAEAVEVAIKLARSTTGKPKILSTKNSFHGKTMGALS ATGRDVYQKPFFTPVPGFEHIPFGDLDMLENKMRTEGKQIAAFLVEPIQGEGGIIVPPEGYLKNAEIICRKYGVLLAVDEI QTGLGRTGELFACDREGVEPDILLLSKALGGGLVPLGVCLSTRQAWNEEFGRLHSSTFANNNFTCAIGLAVLNKLLENGRQ LINNAKSAGNYLLKNLEDINRQYPGVIKEIRGRGLMLGLEFNEFDGSESFSMKYLAEQGGFSPLLAGYLLNVHKVRVAPFL NNPMTLRLQPSLTVATVEIDRALHGLERVVKALYYQDHCELYSYIIG

Fig. S24. *Tf***TAm protein sequence**. The protein sequence of the *Tf*Fusion N-terminal domain (1-432 aa) (*Tf*TAm) with a N-terminal His₆-tag. The start methionine (M) residue is shown in bold. The N-terminal His₆-tag is highlighted in green; the thrombin peptide sequence is highlighted in turquoise.

2.4.3 TfDHR protein sequence

MGSSHHHHHH MGSSHHHHHH SSGLVPRGSHMKEPGPIRDFRSEKKAVTGSELLPEEKPTEKFAFLIHYPSSEDVIKNNPSFKKASKDILEK LIDWEASLDAEPEVIVHLPAIKSKAGKIAEGWLIGIPYSGRHMMEMPRKDAVKVLVTALDKAKALGARIVGLGAYTSVVSR GGSDLQGKGIAVTSGNSYTIATAFDALIEGARLMGIDPAESTGCVIGATGSIGRVCAILLAEEIDKLVLVGNPEKEKTSLR RMEQLADEIYTRAFREILAYKGKVAKIKGIAKWLKGFLDRKRKDDPEVWNKLLTALENQGFSINGYIHENLAAKGKYSNPP VKITVNIKQALLQSDLIISASNSTNHLIGPGHLKPGSVICDVARPPDVSEAVLEQRKDVLVIEGGLVQYPDDICFGQNMGY EPGVNMACLSETMLLALEGTYRDFSIGLKIPVENVYYLRELAQRHGFKLATPWNKNGGVTPEVARMIKEAALKNENVEKIK TPKSS

Fig. S25. *Tf***DHR protein sequence**. The protein sequence of the *Tf*Fusion C-terminal domain (433-902 aa) (*Tf*DHR) with a N-terminal His₆-tag. The start methionine (M) residue is shown in bold. The N-terminal His₆-tag is highlighted in green; the thrombin peptide sequence is highlighted in turquoise.

3. References

- 1 S. Sur, T. D. Romo and A. Grossfield, *J. Phys. Chem. B*, 2018, **122**, 2219–2226.
- 2 N. Stankovic, L. Senerovic, T. Ilic-Tomic, B. Vasiljevic and J. Nikodinovic-Runic, *Appl. Microbiol. Biotechnol.*, 2014, **98**, 3841–3858.
- 3 J. Franke, K. Ishida and C. Hertweck, *Angew. Chemie Int. Ed.*, 2012, **51**, 11611–11615.
- 4 N. Rojas Murcia, X. Lee, P. Waridel, A. Maspoli, H. J. Imker, T. Chai, C. T. Walsh and C. Reimmann, *Front. Microbiol.*, 2015, **6**, 170.
- 5 X. Lee, Á. Fox, J. Sufrin, H. Henry, P. Majcherczyk, D. Haas and C. Reimmann, *J. Bacteriol.*, 2010, **192**, 4251–4255.
- 6 P. Messner, K. Steiner, K. Zarschler and C. Schäffer, *Carbohydr. Res.*, 2008, **343**, 1934–1951.
- 7 S. Matthies, P. Stallforth and P. H. Seeberger, J. Am. Chem. Soc., 2015, **137**, 2848–2851.
- 8 A. González, M. Rodríguez, A. F. Braña, C. Méndez, J. A. Salas and C. Olano, *Microb. Cell Fact.*, 2016, **15**, 56.
- 9 F. Kudo, Y. Kasama, T. Hirayama and T. Eguchi, J. Antibiot. (Tokyo)., 2007, 60, 492–503.
- 10 J. A. Capra and M. Singh, *Bioinformatics*, 2007, **23**, 1875–82.
- 11 S. Lutz, *Curr. Opin. Biotechnol.*, 2010, **21**, 734–43.
- 12 L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass and M. J. E. Sternberg, *Nat. Protoc.*, 2015, **10**, 845–858.
- J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli and D. Hassabis, *Nature*, 2021, **596**, 583–589.
- 14 M. Varadi, S. Anyango, M. Deshpande, S. Nair, C. Natassia, G. Yordanova, D. Yuan, O. Stroe, G. Wood, A. Laydon, A. Žídek, T. Green, K. Tunyasuvunakool, S. Petersen, J. Jumper, E. Clancy, R. Green, A. Vora, M. Lutfi, M. Figurnov, A. Cowie, N. Hobbs, P. Kohli, G. Kleywegt, E. Birney, D. Hassabis and S. Velankar, *Nucleic Acids Res.*, 2022, **50**, D439–D444.
- 15 A. Rath, M. Glibowicka, V. G. Nadeau, G. Chen and C. M. Deber, *Proc. Natl. Acad. Sci. U. S. A.*, 2009, **106**, 1760–1765.
- 16 S. Prasad, P. B. Khadatare and I. Roy, *Appl. Environ. Microbiol.*, 2011, **77**, 4603–4609.